Gurfinkel, Arie; Ganesh, Vijay
(Ed.)
Abstract The dominant state-of-the-art approach for solving bit-vector formulas in Satisfiability Modulo Theories (SMT) is bit-blasting, an eager reduction to propositional logic. Bit-blasting is surprisingly efficient in practice but does not generally scale well with increasing bit-widths, especially when bit-vector arithmetic is present. In this paper, we present a novel CEGAR-style abstraction-refinement procedure for the theory of fixed-size bit-vectors that significantly improves the scalability of bit-blasting. We provide lemma schemes for various arithmetic bit-vector operators and an abduction-based framework for synthesizing refinement lemmas. We extended the state-of-the-art SMT solver Bitwuzla with our abstraction-refinement approach and show that it significantly improves solver performance on a variety of benchmark sets, including industrial benchmarks that arise from smart contract verification.
more »
« less
An official website of the United States government

