Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract We present a class of high-order Eulerian–Lagrangian Runge–Kutta finite volume methods that can numerically solve Burgers’ equation with shock formations, which could be extended to general scalar conservation laws. Eulerian–Lagrangian (EL) and semi-Lagrangian (SL) methods have recently seen increased development and have become a staple for allowing large time-stepping sizes. Yet, maintaining relatively large time-stepping sizes post shock formation remains quite challenging. Our proposed scheme integrates the partial differential equation on a space-time region partitioned by linear approximations to the characteristics determined by the Rankine–Hugoniot jump condition. We trace the characteristics forward in time and present a merging procedure for the mesh cells to handle intersecting characteristics due to shocks. Following this partitioning, we write the equation in a time-differential form and evolve with Runge–Kutta methods in a method-of-lines fashion. High-resolution methods such as ENO and WENO-AO schemes are used for spatial reconstruction. Extension to higher dimensions is done via dimensional splitting. Numerical experiments demonstrate our scheme’s high-order accuracy and ability to sharply capture post-shock solutions with large time-stepping sizes.more » « less
- 
            Abstract We present fourth-order conservative non-splitting semi-Lagrangian (SL) Hermite essentially non-oscillatory (HWENO) schemes for linear transport equations with applications for nonlinear problems including the Vlasov–Poisson system, the guiding center Vlasov model, and the incompressible Euler equations in the vorticity-stream function formulation. The proposed SL HWENO schemes combine a weak formulation of the characteristic Galerkin method with two newly constructed HWENO reconstruction methods. The new HWENO reconstructions are meticulously designed to strike a delicate balance between curbing numerical oscillation and introducing excessive dissipation. Mass conservation naturally holds due to the weak formulation of the semi-Lagrangian discontinuous Galerkin method and the design of the HWENO reconstructions. We apply a positivity-preserving limiter to maintain the positivity of numerical solutions when needed. Abundant benchmark tests are performed to verify the effectiveness of the proposed SL HWENO schemes.more » « less
- 
            In this paper, we construct a novel Eulerian–Lagrangian finite volume (ELFV) method for nonlinear scalar hyperbolic equations in one space dimension. It is well known that the exact solutions to such problems may contain shocks though the initial conditions are smooth, and direct numerical methods may suffer from restricted time step sizes. To relieve the restriction, we propose an ELFV method, where the space-time domain was separated by the partition lines originated from the cell interfaces whose slopes are obtained following the Rakine–Hugoniot junmp condition. Unfortunately, to avoid the intersection of the partition lines, the time step sizes are still limited. To fix this gap, we detect effective troubled cells (ETCs) and carefully design the influence region of each ETC, within which the partitioned space-time regions are merged together to form a new one. Then with the new partition of the space-time domain, we theoretically prove that the proposed first-order scheme with Euler forward time discretization is total-variation-diminishing and maximum-principle-preserving with at least twice larger time step constraints than the classical first order Eulerian method for Burgers’ equation. Numerical experiments verify the optimality of the designed time step sizes.more » « lessFree, publicly-accessible full text available July 1, 2026
- 
            Free, publicly-accessible full text available May 1, 2026
- 
            In this paper, we propose a conservative low rank tensor method to approximate nonlinear Vlasov solutions. The low rank approach is based on our earlier work [W. Guo and J.-M. Qiu, A Low Rank Tensor Representation of Linear Transport and Nonlinear Vlasov Solutions and Their Associated Flow Maps, preprint, https://arxiv.org/abs/2106.08834, 2021]. It takes advantage of the fact that the differential operators in the Vlasov equation are tensor friendly, based on which we propose to dynamically and adaptively build up low rank solution basis by adding new basis functions from discretization of the differential equation, and removing basis from a singular value decomposition (SVD)-type truncation procedure. For the discretization, we adopt a high order finite difference spatial discretization together with a second order strong stability preserving multistep time discretization. While the SVD truncation will remove the redundancy in representing the high dimensional Vlasov solution, it will destroy the conservation properties of the associated full conservative scheme. In this paper, we develop a conservative truncation procedure with conservation of mass, momentum, and kinetic energy densities. The conservative truncation is achieved by an orthogonal projection onto a subspace spanned by 1, 𝑣, and 𝑣2 in the velocity space associated with a weighted inner product. Then the algorithm performs a weighted SVD truncation of the remainder, which involves a scaling, followed by the standard SVD truncation and rescaling back. The algorithm is further developed in high dimensions with hierarchical Tucker tensor decomposition of high dimensional Vlasov solutions, overcoming the curse of dimensionality. An extensive set of nonlinear Vlasov examples are performed to show the effectiveness and conservation property of proposed conservative low rank approach. Comparison is performed against the nonconservative low rank tensor approach on conservation history of mass, momentum, and energy.more » « less
- 
            We develop a set of highly efficient and effective computational algorithms and simulation tools for fluid simulations on a network. The mathematical models are a set of hyperbolic conservation laws on edges of a network, as well as coupling conditions on junctions of a network. For example, the shallow water system, together with flux balance and continuity conditions at river intersections, model water flows on a river network. The computationally accurate and robust discontinuous Galerkin methods, coupled with explicit strong stability preserving Runge-Kutta methods, are implemented for simulations on network edges. Meanwhile, linear and nonlinear scalable Riemann solvers are being developed and implemented at network vertices. These network simulations result in tools that are added to the existing PETSc and DMNetwork software libraries for the scientific community in general. Simulation results of a shallow water system on a Mississippi river network with over one billion network variables are performed on an extreme-scale computer using up to 8,192 processor with an optimal parallel efficiency. Further potential applications include traffic flow simulations on a highway network and blood flow simulations on a arterial network, among many others.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
