skip to main content


This content will become publicly available on July 1, 2024

Title: Scalable Riemann Solvers with the Discontinuous Galerkin Method for Hyperbolic Network Simulation
We develop a set of highly efficient and effective computational algorithms and simulation tools for fluid simulations on a network. The mathematical models are a set of hyperbolic conservation laws on edges of a network, as well as coupling conditions on junctions of a network. For example, the shallow water system, together with flux balance and continuity conditions at river intersections, model water flows on a river network. The computationally accurate and robust discontinuous Galerkin methods, coupled with explicit strong stability preserving Runge-Kutta methods, are implemented for simulations on network edges. Meanwhile, linear and nonlinear scalable Riemann solvers are being developed and implemented at network vertices. These network simulations result in tools that are added to the existing PETSc and DMNetwork software libraries for the scientific community in general. Simulation results of a shallow water system on a Mississippi river network with over one billion network variables are performed on an extreme-scale computer using up to 8,192 processor with an optimal parallel efficiency. Further potential applications include traffic flow simulations on a highway network and blood flow simulations on a arterial network, among many others.  more » « less
Award ID(s):
2111253
NSF-PAR ID:
10459047
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Platform for Advanced Scientific Computing (PASC)
Page Range / eLocation ID:
1 to 10
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Airborne vertically profiling Doppler radar data and output from a ∼1-km-grid-resolution numerical simulation are used to examine how relatively small-scale terrain ridges (∼10–25 km apart and ∼0.5–1.0 km above the surrounding valleys) impact cross-mountain flow, cloud processes, and surface precipitation in deep stratiform precipitation systems. The radar data were collected along fixed flight tracks aligned with the wind, about 100 km long between the Snake River Plain and the Idaho Central Mountains, as part of the 2017 Seeded and Natural Orographic Wintertime clouds: the Idaho Experiment (SNOWIE). Data from repeat flight legs are composited in order to suppress transient features and retain the effect of the underlying terrain. Simulations closely match observed series of terrain-driven deep gravity waves, although the simulated wave amplitude is slightly exaggerated. The deep waves produce pockets of supercooled liquid water in the otherwise ice-dominated clouds (confirmed by flight-level observations and the model) and distort radar-derived hydrometeor trajectories. Snow particles aloft encounter several wave updrafts and downdrafts before reaching the ground. No significant wavelike modulation of radar reflectivity or model ice water content occurs. The model does indicate substantial localized precipitation enhancement (1.8–3.0 times higher than the mean) peaking just downwind of individual ridges, especially those ridges with the most intense wave updrafts, on account of shallow pockets of high liquid water content on the upwind side, leading to the growth of snow and graupel, falling out mostly downwind of the crest. Radar reflectivity values near the surface are complicated by snowmelt, but suggest a more modest enhancement downwind of individual ridges. Significance Statement Mountains in the midlatitude belt and elsewhere receive more precipitation than the surrounding lowlands. The mountain terrain often is complex, and it remains unclear exactly where this precipitation enhancement occurs, because weather radars are challenged by beam blockage and the gauge network is too sparse to capture the precipitation heterogeneity over complex terrain. This study uses airborne profiling radar and high-resolution numerical simulations for four winter storms over a series of ridges in Idaho. One key finding is that while instantaneous airborne radar transects of the cross-mountain flow, vertical drafts, and reflectivity contain much transient small-scale information, time-averaged transects look very much like the model transects. The model indicates substantial surface precipitation enhancement over terrain, peaking over and just downwind of individual ridges. Radar observations suggest less enhancement, but the radar-based assessment is uncertain. The second key conclusion is that, even though orographic gravity waves are felt all the way up into the upper troposphere, the orographic precipitation enhancement is due to processes very close to the terrain. 
    more » « less
  2. Abstract

    Earth System Models (ESMs) are essential tools for understanding and predicting global change, but they cannot explicitly resolve hillslope‐scale terrain structures that fundamentally organize water, energy, and biogeochemical stores and fluxes at subgrid scales. Here we bring together hydrologists, Critical Zone scientists, and ESM developers, to explore how hillslope structures may modulate ESM grid‐level water, energy, and biogeochemical fluxes. In contrast to the one‐dimensional (1‐D), 2‐ to 3‐m deep, and free‐draining soil hydrology in most ESM land models, we hypothesize that 3‐D, lateral ridge‐to‐valley flow through shallow and deep paths and insolation contrasts between sunny and shady slopes are the top two globally quantifiable organizers of water and energy (and vegetation) within an ESM grid cell. We hypothesize that these two processes are likely to impact ESM predictions where (and when) water and/or energy are limiting. We further hypothesize that, if implemented in ESM land models, these processes will increase simulated continental water storage and residence time, buffering terrestrial ecosystems against seasonal and interannual droughts. We explore efficient ways to capture these mechanisms in ESMs and identify critical knowledge gaps preventing us from scaling up hillslope to global processes. One such gap is our extremely limited knowledge of the subsurface, where water is stored (supporting vegetation) and released to stream baseflow (supporting aquatic ecosystems). We conclude with a set of organizing hypotheses and a call for global syntheses activities and model experiments to assess the impact of hillslope hydrology on global change predictions.

     
    more » « less
  3. We derive and investigate numerically a reduced model for wave–vortex interactions involving non-dispersive waves, which we study in a two-dimensional shallow water system with an eye towards applications in atmosphere–ocean fluid dynamics. The model consists of a coupled set of nonlinear partial differential equations for the Lagrangian-mean velocity and the wave-related pseudomomentum vector field defined in generalized Lagrangian-mean theory. It allows for two-way interactions between the waves and the balanced flow that is controlled by the distribution of Lagrangian-mean potential vorticity, and for strong solutions it features a desirable exact energy conservation law for the sum of wave energy and mean flow energy. Our model goes beyond standard ray tracing as we can derive weak solutions that contain discontinuities in the pseudomomentum field, using the theory of weakly hyperbolic systems. This allows caustics to form without predicting infinite wave amplitudes, as would be the case in the standard ray-tracing theory. Suitable wave forcing and dissipation terms are added to the model and a numerical scheme for the model is implemented as a coupled set of pseudo-spectral and finite-volume integrators. Idealized examples of interactions between wavepackets and simple vortex structures are presented to illustrate the model dynamics. The unforced and non-dissipative simulations suggest a heuristic rule of ‘greedy’ waves, i.e. in the long run the wave field always extracts energy from the mean flow. 
    more » « less
  4. Motivated by a wide range of applications, research on agent-based models of contagion propagation over networks has attracted a lot of attention in the literature. Many of the available software systems for simulating such agent-based models require users to download software, build the executable and set up execution environments. Further, running the resulting executable may require access to high performance computing clusters. Our work describes an open access software system (NetSimS) that works under the “Modeling and Simulation as a Service” (MSaaS) paradigm. It allows users to run simulations by selecting agent-based models and parameters, initial conditions, and networks through a web interface. The system supports a variety of models and networks with millions of nodes and edges. In addition to the simulator, the system includes components that allow users to choose initial conditions for simulations in a variety of ways, to analyze the data generated through simulations, and to produce plots from the data. We describe the components of NetSimS and carry out a performance evaluation of the system. We also discuss two case studies carried out on large networks using the system. NetSimS is a major component within net.science, a cyberinfrastructure for network science. Index Terms—Agent-Based Simulation, Contagion, Networks, Modeling and Simulation as a Service, Cyberinfrastructure 
    more » « less
  5. Motivated by a wide range of applications, research on agent-based models of contagion propagation over networks has attracted a lot of attention in the literature. Many of the available software systems for simulating such agent-based models require users to download software, build the executable, and set up execution environments. Further, running the resulting executable may require access to high performance computing clusters. Our work describes an open access software system (NetSimS) that works under the “Modeling and Simulation as a Service” (MSaaS) paradigm. It enables users to run simulations by selecting models and parameter values, initial conditions, and networks through a web interface. The system supports a variety of models and networks with millions of nodes and edges. In addition to the simulator, the system includes components that enable users to choose initial conditions for simulations in a variety of ways, to analyze the data generated through simulations, and to produce plots from the data. We describe the components of NetSimS and carry out a performance evaluation of the system. We also discuss two case studies carried out on large networks using the system. NetSimS is a major component within net.science, a cyberinfrastructure for network science. 
    more » « less