skip to main content

Search for: All records

Award ID contains: 2111812

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The emergence of spatial and temporal coherence of light emitted from solid-state systems is a fundamental phenomenon intrinsically aligned with the control of light-matter coupling. It is canonical for laser oscillation, emerges in the superradiance of collective emitters, and has been investigated in bosonic condensates of thermalized light, as well as exciton-polaritons. Our room temperature experiments show the strong light-matter coupling between microcavity photons and excitons in atomically thin WSe 2 . We evidence the density-dependent expansion of spatial and temporal coherence of the emitted light from the spatially confined system ground-state, which is accompanied by a threshold-like response of the emitted light intensity. Additionally, valley-physics is manifested in the presence of an external magnetic field, which allows us to manipulate K and K’ polaritons via the valley-Zeeman-effect. Our findings validate the potential of atomically thin crystals as versatile components of coherent light-sources, and in valleytronic applications at room temperature.
    Free, publicly-accessible full text available December 1, 2022
  2. Abstract Engineering non-linear hybrid light-matter states in tailored lattices is a central research strategy for the simulation of complex Hamiltonians. Excitons in atomically thin crystals are an ideal active medium for such purposes, since they couple strongly with light and bear the potential to harness giant non-linearities and interactions while presenting a simple sample-processing and room temperature operability. We demonstrate lattice polaritons, based on an open, high-quality optical cavity, with an imprinted photonic lattice strongly coupled to excitons in a WS 2 monolayer. We experimentally observe the emergence of the canonical band-structure of particles in a one-dimensional lattice at room temperature, and demonstrate frequency reconfigurability over a spectral window exceeding 85 meV, as well as the systematic variation of the nearest-neighbour coupling, reflected by a tunability in the bandwidth of the p-band polaritons by 7 meV. The technology presented in this work is a critical demonstration towards reconfigurable photonic emulators operated with non-linear photonic fluids, offering a simple experimental implementation and working at ambient conditions.
    Free, publicly-accessible full text available December 1, 2022
  3. null (Ed.)