skip to main content


Title: Tunable exciton valley-pseudospin orders in moiré superlattices
Abstract

Excitons in two-dimensional (2D) semiconductors have offered an attractive platform for optoelectronic and valleytronic devices. Further realizations of correlated phases of excitons promise device concepts not possible in the single particle picture. Here we report tunable exciton “spin” orders in WSe2/WS2moiré superlattices. We find evidence of an in-plane (xy) order of exciton “spin”—here, valley pseudospin—around exciton fillingvex = 1, which strongly suppresses the out-of-plane “spin” polarization. Upon increasingvexor applying a small magnetic field of ~10 mT, it transitions into an out-of-plane ferromagnetic (FM-z) spin order that spontaneously enhances the “spin” polarization, i.e., the circular helicity of emission light is higher than the excitation. The phase diagram is qualitatively captured by a spin-1/2 Bose–Hubbard model and is distinct from the fermion case. Our study paves the way for engineering exotic phases of matter from correlated spinor bosons, opening the door to a host of unconventional quantum devices.

 
more » « less
Award ID(s):
2111812 2129412
NSF-PAR ID:
10507977
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Excitons are spin integer particles that are predicted to condense into a coherent quantum state at sufficiently low temperature. Here by using photocurrent imaging we report experimental evidence of formation and efficient transport of non-equilibrium excitons in Bi2-xSbxSe3nanoribbons. The photocurrent distributions are independent of electric field, indicating that photoexcited electrons and holes form excitons. Remarkably, these excitons can transport over hundreds of micrometers along the topological insulator (TI) nanoribbons before recombination at up to 40 K. The macroscopic transport distance, combined with short carrier lifetime obtained from transient photocurrent measurements, indicates an exciton diffusion coefficient at least 36 m2 s−1, which corresponds to a mobility of 6 × 104 m2 V−1 s−1at 7 K and is four order of magnitude higher than the value reported for free carriers in TIs. The observation of highly dissipationless exciton transport implies the formation of superfluid-like exciton condensate at the surface of TIs.

     
    more » « less
  2. Abstract

    Transition metal dichalcogenide (TMDC) moiré superlattices, owing to the moiré flatbands and strong correlation, can host periodic electron crystals and fascinating correlated physics. The TMDC heterojunctions in the type-II alignment also enable long-lived interlayer excitons that are promising for correlated bosonic states, while the interaction is dictated by the asymmetry of the heterojunction. Here we demonstrate a new excitonic state, quadrupolar exciton, in a symmetric WSe2-WS2-WSe2trilayer moiré superlattice. The quadrupolar excitons exhibit a quadratic dependence on the electric field, distinctively different from the linear Stark shift of the dipolar excitons in heterobilayers. This quadrupolar exciton stems from the hybridization of WSe2valence moiré flatbands. The same mechanism also gives rise to an interlayer Mott insulator state, in which the two WSe2layers share one hole laterally confined in one moiré unit cell. In contrast, the hole occupation probability in each layer can be continuously tuned via an out-of-plane electric field, reaching 100% in the top or bottom WSe2under a large electric field, accompanying the transition from quadrupolar excitons to dipolar excitons. Our work demonstrates a trilayer moiré system as a new exciting playground for realizing novel correlated states and engineering quantum phase transitions.

     
    more » « less
  3. Abstract

    Non‐collinear antiferromagnets (AFMs) are an exciting new platform for studying intrinsic spin Hall effects (SHEs), phenomena that arise from the materials’ band structure, Berry phase curvature, and linear response to an external electric field. In contrast to conventional SHE materials, symmetry analysis of non‐collinear antiferromagnets does not forbid non‐zero longitudinal and out‐of‐plane spin currents with polarization and predicts an anisotropy with current orientation to the magnetic lattice. Here, multi‐component out‐of‐plane spin Hall conductivities are reported in L12‐ordered antiferromagnetic PtMn3thin films that are uniquely generated in the non‐collinear state. The maximum spin torque efficiencies (ξ  =JS /Je ≈ 0.3) are significantly larger than in Pt (ξ  ≈  0.1). Additionally, the spin Hall conductivities in the non‐collinear state exhibit the predicted orientation‐dependent anisotropy, opening the possibility for new devices with selectable spin polarization. This work demonstrates symmetry control through the magnetic lattice as a pathway to tailored functionality in magnetoelectronic systems.

     
    more » « less
  4. Abstract

    A long‐standing pursuit in materials science is to identify suitable magnetic semiconductors for integrated information storage, processing, and transfer. Van der Waals magnets have brought forth new material candidates for this purpose. Recently, sharp exciton resonances in antiferromagnet NiPS3have been reported to correlate with magnetic order, that is, the exciton photoluminescence intensity diminishes above the Néel temperature. Here, it is found that the polarization of maximal exciton emission rotates locally, revealing three possible spin chain directions. This discovery establishes a new understanding of the antiferromagnet order hidden in previous neutron scattering and optical experiments. Furthermore, defect‐bound states are suggested as an alternative exciton formation mechanism that has yet to be explored in NiPS3. The supporting evidence includes chemical analysis, excitation power, and thickness dependent photoluminescence and first‐principles calculations. This mechanism for exciton formation is also consistent with the presence of strong phonon side bands. This study shows that anisotropic exciton photoluminescence can be used to read out local spin chain directions in antiferromagnets and realize multi‐functional devices via spin‐photon transduction.

     
    more » « less
  5. Abstract

    The use of valley excitonic states of transition metal dichalcogenides to store and manipulate information is hampered by fast carrier recombination and short valley lifetime. We propose theoretically a scheme to overcome such an obstacle, by applying a tilted exchange field through the magnetic proximity effect on monolayer MoS2. While the in-plane component of the exchange field brightens the dark exciton by spin mixing, the out-of-plane field can effectively gate the emission with an ON/OFF ratio of 2700. Importantly, the brightening is valley selective, leading to nearly 100% valley and spin polarization at room temperature. The resulting strongly gateable dark-exciton emission with long lifetime and near unity valley polarization makes it convenient to manipulate the valley degree of freedom, which may offer new paradigm for information processing and transmission.

     
    more » « less