Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Kaplan, C (Ed.)Abstract Transcription factors activate gene expression in development, homeostasis, and stress with DNA binding domains and activation domains. Although there exist excellent computational models for predicting DNA binding domains from protein sequence, models for predicting activation domains from protein sequence have lagged, particularly in metazoans. We recently developed a simple and accurate predictor of acidic activation domains on human transcription factors. Here, we show how the accuracy of this human predictor arises from the clustering of aromatic, leucine, and acidic residues, which together are necessary for acidic activation domain function. When we combine our predictor with the predictions of convolutional neural network (CNN) models trained in yeast, the intersection is more accurate than individual models, emphasizing that each approach carries orthogonal information. We synthesize these findings into a new set of activation domain predictions on human transcription factors.more » « less
-
Abstract Transcription factors regulate gene expression by binding to regulatory DNA and recruiting regulatory protein complexes. The DNA-binding and protein-binding functions of transcription factors are traditionally described as independent functions performed by modular protein domains. Here, I argue that genome binding can be a 2-part process with both DNA-binding and protein-binding steps, enabling transcription factors to perform a 2-step search of the nucleus to find their appropriate binding sites in a eukaryotic genome. I support this hypothesis with new and old results in the literature, discuss how this hypothesis parsimoniously resolves outstanding problems, and present testable predictions.more » « less
-
Gene expression in Arabidopsis is regulated by more than 1,900 transcription factors (TFs), which have been identified genome-wide by the presence of well-conserved DNA-binding domains. Activator TFs contain activation domains (ADs) that recruit coactivator complexes; however, for nearly all Arabidopsis TFs, we lack knowledge about the presence, location and transcriptional strength of their ADs1. To address this gap, here we use a yeast library approach to experimentally identify Arabidopsis ADs on a proteome-wide scale, and find that more than half of the Arabidopsis TFs contain an AD. We annotate 1,553 ADs, the vast majority of which are, to our knowledge, previously unknown. Using the dataset generated, we develop a neural network to accurately predict ADs and to identify sequence features that are necessary to recruit coactivator complexes. We uncover six distinct combinations of sequence features that result in activation activity, providing a framework to interrogate the subfunctionalization of ADs. Furthermore, we identify ADs in the ancient AUXIN RESPONSE FACTOR family of TFs, revealing that AD positioning is conserved in distinct clades. Our findings provide a deep resource for understanding transcriptional activation, a framework for examining function in intrinsically disordered regions and a predictive model of ADs.more » « less
-
Eukaryotic transcription factors activate gene expression with their DNA-binding domains and activation domains. DNA- binding domains bind the genome by recognizing structurally related DNA sequences; they are structured, conserved, and predictable from protein sequences. Activation domains recruit chromatin modifiers, coactivator complexes, or basal tran- scriptional machinery via structurally diverse protein-protein interactions. Activation domains and DNA-binding domains have been called independent, modular units, but there are many departures from modularity, including interactions be- tween these regions and overlap in function. Compared to DNA-binding domains, activation domains are poorly under- stood because they are poorly conserved, intrinsically disor- dered, and difficult to predict from protein sequences. This review, organized around commonly asked questions, de- scribes recent progress that the field has made in under- standing the sequence features that control activation domains and predicting them from sequence.more » « less
An official website of the United States government
