skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2112311

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We prove the existence of nontrivial closed surfaces with constant anisotropic mean curvature with respect to elliptic integrands in closed smooth 3–dimensional Riemannian manifolds. The constructed min‐max surfaces are smooth with at most one singular point. The constant anisotropic mean curvature can be fixed to be any real number. In particular, we partially solve a conjecture of Allard in dimension 3. 
    more » « less
  2. We prove the stability of optimal traffic plans in branched transport. In particular, we show that any limit of optimal traffic plans is optimal as well. This result goes beyond the Eulerian stability proved in [7], extending it to the Lagrangian framework. 
    more » « less
  3. Abstract We prove that, for every closed (not necessarily convex) hypersurface Σ in ℝ n + 1 {\mathbb{R}^{n+1}} and every p > n {p>n} , the L p {L^{p}} -norm of the trace-free part of the anisotropic second fundamental form controls from above the W 2 , p {W^{2,p}} -closeness of Σ to the Wulff shape. In the isotropic setting, we provide a simpler proof. This result is sharp since in the subcritical regime p ≤ n {p\leq n} , the lack of convexity assumptions may lead in general to bubbling phenomena.Moreover, we obtain a stability theorem for quasi-Einstein (not necessarily convex) hypersurfaces and we improve the quantitative estimates in the convex setting. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)