skip to main content


Search for: All records

Award ID contains: 2112663

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We demonstrate high fidelity repetitive projective measurements of nuclear spin qubits in an array of neutral ytterbium-171 (171Yb) atoms. We show that the qubit state can be measured with a fidelity of 0.995(4) under a condition that leaves it in the state corresponding to the measurement outcome with a probability of 0.993(6) for a single tweezer and 0.981(4) averaged over the array. This is accomplished by near-perfect cyclicity of one of the nuclear spin qubit states with an optically excited state under a magnetic field of B=58 G, resulting in a bright/dark contrast of ≈105 during fluorescence readout. The performance improves further as ∼1/B2. The state-averaged readout survival of 0.98(1) is limited by off-resonant scattering to dark states and can be addressed via post-selection by measuring the atom number at the end of the circuit, or during the circuit by performing a measurement of both qubit states. We combine projective measurements with high-fidelity rotations of the nuclear spin qubit via an AC magnetic field to explore several paradigmatic scenarios, including the non-commutivity of measurements in orthogonal bases, and the quantum Zeno mechanism in which measurements "freeze" coherent evolution. Finally, we employ real-time feedforward to repetitively deterministically prepare the qubit in the +z or −z direction after initializing it in an orthogonal basis and performing a projective measurement in the z-basis. These capabilities constitute an important step towards adaptive quantum circuits with atom arrays, such as in measurement-based quantum computation, fast many-body state preparation, holographic dynamics simulations, and quantum error correction. 
    more » « less
    Free, publicly-accessible full text available May 4, 2024
  2. Quantum networks providing shared entanglement over a mesh of quantum nodes will revolutionize the field of quantum information science by offering novel applications in quantum computation, enhanced precision in networks of sensors and clocks, and efficient quantum communication over large distances. Recent experimental progress with individual neutral atoms demonstrates a high potential for implementing the crucial components of such networks. We highlight latest developments and near-term prospects on how arrays of individually controlled neutral atoms are suited for both efficient remote entanglement generation and large-scale quantum information processing, thereby providing the necessary features for sharing high-fidelity and error-corrected multi-qubit entangled states between the nodes. We describe both the functionality requirements and several examples for advanced, large-scale quantum networks composed of neutral atom processing nodes. 
    more » « less
  3. In fully-inverted atomic ensembles, photon-mediated interactions give rise to Dicke superradiance, a form of many-body decay that results in a rapid release of energy as a photon burst. While originally studied in point-like ensembles, this phenomenon persists in extended ordered systems if the inter-particle distance is below a certain bound. Here, we investigate Dicke superradiance in a realistic experimental setting using ordered arrays of alkaline earth(-like) atoms, such as strontium and ytterbium. Such atoms offer exciting new opportunities for light-matter interaction as their internal structure offers the possibility of trapping at short interatomic distances compared to their strong long-wavelength transitions, providing the potential for strong collectively modified interactions. Despite their intricate electronic structure, we show that two-dimensional arrays of these atomic species should exhibit many-body superradiance for achievable lattice constants. Moreover, superradiance effectively ''closes'' transitions, such that multilevel atoms become more two-level like. This occurs because the avalanche-like decay funnels the emission of most photons into the dominant transition, overcoming the single-atom decay ratios dictated by their fine structure and Zeeman branching. Our work represents an important step in harnessing alkaline-earth atoms as quantum optical sources and as dissipative generators of entanglement. 
    more » « less