skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2113345

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Machine learning (ML) models have shown promise in classifying raw executable files (binaries) as malicious or benign with high accuracy. This has led to the increasing influence of ML-based classification methods in academic and real-world malware detection, a critical tool in cybersecurity. However, previous work provoked caution by creating variants of malicious binaries, referred to as adversarial examples, that are transformed in a functionality-preserving way to evade detection. In this work, we investigate the effectiveness of using adversarial training methods to create malware-classification models that are more robust to some state-of-the-art attacks. To train our most robust models, we significantly increase the efficiency and scale of creating adversarial examples to make adversarial training practical, which has not been done before in raw-binary malware detectors. We then analyze the effects of varying the length of adversarial training, as well as analyze the effects of training with various types of attacks. We find that data augmentation does not deter state-of-the-art attacks, but that using a generic gradient-guided method, used in other discrete domains, does improve robustness. We also show that in most cases, models can be made more robust to malware-domain attacks by adversarially training them with lower-effort versions of the same attack. In the best case, we reduce one state-of-the-art attack’s success rate from 90% to 5%. We also find that training with some types of attacks can increase robustness to other types of attacks. Finally, we discuss insights gained from our results, and how they can be used to more effectively train robust malware detectors. 
    more » « less
  2. Machine learning (ML) models have shown promise in classifying raw executable files (binaries) as malicious or benign with high accuracy. This has led to the increasing influence of ML-based classification methods in academic and real-world malware detection, a critical tool in cybersecurity. However, previous work provoked caution by creating variants of malicious binaries, referred to as adversarial examples, that are transformed in a functionality-preserving way to evade detection. In this work, we investigate the effectiveness of using adversarial training methods to create malware-classification models that are more robust to some state-of-the-art attacks. To train our most robust models, we significantly increase the efficiency and scale of creating adversarial examples to make adversarial training practical, which has not been done before in raw-binary malware detectors. We then analyze the effects of varying the length of adversarial training, as well as analyze the effects of training with various types of attacks. We find that data augmentation does not deter state-of-the-art attacks, but that using a generic gradient-guided method, used in other discrete domains, does improve robustness. We also show that in most cases, models can be made more robust to malware-domain attacks by adversarially training them with lower-effort versions of the same attack. In the best case, we reduce one state-of-the-art attack’s success rate from 90% to 5%. We also find that training with some types of attacks can increase robustness to other types of attacks. Finally, we discuss insights gained from our results, and how they can be used to more effectively train robust malware detectors. 
    more » « less
  3. Neural networks have enabled learning over examples that contain thousands of dimensions. However, most of these models are limited to training and evaluating on a finite collection of points and do not consider the hypervolume in which the data resides. Any analysis of the model’s local or global behavior is therefore limited to very expensive or imprecise estimators. We propose to formulate neural networks as a composition of a bijective (flow) network followed by a learnable, separable network. This construction allows for learning (or assessing) over full hypervolumes with precise estimators at tractable computational cost via integration over the input space. We develop the necessary machinery, propose several practical integrals to use during training, and demonstrate their utility. 
    more » « less
  4. Motivated by the transformative impact of deep neural networks (DNNs) in various domains, researchers and anti-virus vendors have proposed DNNs for malware detection from raw bytes that do not require manual feature engineering. In this work, we propose an attack that interweaves binary-diversification techniques and optimization frameworks to mislead such DNNs while preserving the functionality of binaries. Unlike prior attacks, ours manipulates instructions that are a functional part of the binary, which makes it particularly challenging to defend against. We evaluated our attack against three DNNs in white- and black-box settings, and found that it often achieved success rates near 100%. Moreover, we found that our attack can fool some commercial anti-viruses, in certain cases with a success rate of 85%. We explored several defenses, both new and old, and identified some that can foil over 80% of our evasion attempts. However, these defenses may still be susceptible to evasion by attacks, and so we advocate for augmenting malware-detection systems with methods that do not rely on machine learning. 
    more » « less