skip to main content


Search for: All records

Award ID contains: 2113409

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    ℓ 1 -penalized quantile regression (QR) is widely used for analysing high-dimensional data with heterogeneity. It is now recognized that the ℓ1-penalty introduces non-negligible estimation bias, while a proper use of concave regularization may lead to estimators with refined convergence rates and oracle properties as the signal strengthens. Although folded concave penalized M-estimation with strongly convex loss functions have been well studied, the extant literature on QR is relatively silent. The main difficulty is that the quantile loss is piecewise linear: it is non-smooth and has curvature concentrated at a single point. To overcome the lack of smoothness and strong convexity, we propose and study a convolution-type smoothed QR with iteratively reweighted ℓ1-regularization. The resulting smoothed empirical loss is twice continuously differentiable and (provably) locally strongly convex with high probability. We show that the iteratively reweighted ℓ1-penalized smoothed QR estimator, after a few iterations, achieves the optimal rate of convergence, and moreover, the oracle rate and the strong oracle property under an almost necessary and sufficient minimum signal strength condition. Extensive numerical studies corroborate our theoretical results.

     
    more » « less
  2. null (Ed.)
    Abstract This paper establishes non-asymptotic concentration bound and Bahadur representation for the quantile regression estimator and its multiplier bootstrap counterpart in the random design setting. The non-asymptotic analysis keeps track of the impact of the parameter dimension $d$ and sample size $n$ in the rate of convergence, as well as in normal and bootstrap approximation errors. These results represent a useful complement to the asymptotic results under fixed design and provide theoretical guarantees for the validity of Rademacher multiplier bootstrap in the problems of confidence construction and goodness-of-fit testing. Numerical studies lend strong support to our theory and highlight the effectiveness of Rademacher bootstrap in terms of accuracy, reliability and computational efficiency. 
    more » « less