skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Robust estimation and inference for expected shortfall regression with many regressors
Abstract Expected shortfall (ES), also known as superquantile or conditional value-at-risk, is an important measure in risk analysis and stochastic optimisation and has applications beyond these fields. In finance, it refers to the conditional expected return of an asset given that the return is below some quantile of its distribution. In this paper, we consider a joint regression framework recently proposed to model the quantile and ES of a response variable simultaneously, given a set of covariates. The current state-of-the-art approach to this problem involves minimising a non-differentiable and non-convex joint loss function, which poses numerical challenges and limits its applicability to large-scale data. Motivated by the idea of using Neyman-orthogonal scores to reduce sensitivity to nuisance parameters, we propose a statistically robust and computationally efficient two-step procedure for fitting joint quantile and ES regression models that can handle highly skewed and heavy-tailed data. We establish explicit non-asymptotic bounds on estimation and Gaussian approximation errors that lay the foundation for statistical inference, even with increasing covariate dimensions. Finally, through numerical experiments and two data applications, we demonstrate that our approach well balances robustness, statistical, and numerical efficiencies for expected shortfall regression.  more » « less
Award ID(s):
2238428 2113346 2401268 2113409
PAR ID:
10514831
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of the Royal Statistical Society Series B: Statistical Methodology
Volume:
85
Issue:
4
ISSN:
1369-7412
Format(s):
Medium: X Size: p. 1223-1246
Size(s):
p. 1223-1246
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Linear quantile regression is a powerful tool to investigate how predictors may affect a response heterogeneously across different quantile levels. Unfortunately, existing approaches find it extremely difficult to adjust for any dependency between observation units, largely because such methods are not based upon a fully generative model of the data. For analysing spatially indexed data, we address this difficulty by generalizing the joint quantile regression model of Yang and Tokdar (Journal of the American Statistical Association, 2017, 112(519), 1107–1120) and characterizing spatial dependence via a Gaussian or t-copula process on the underlying quantile levels of the observation units. A Bayesian semiparametric approach is introduced to perform inference of model parameters and carry out spatial quantile smoothing. An effective model comparison criteria is provided, particularly for selecting between different model specifications of tail heaviness and tail dependence. Extensive simulation studies and two real applications to particulate matter concentration and wildfire risk are presented to illustrate substantial gains in inference quality, prediction accuracy and uncertainty quantification over existing alternatives. 
    more » « less
  2. Summary Quantile regression has become a widely used tool for analysing competing risk data. However, quantile regression for competing risk data with a continuous mark is still scarce. The mark variable is an extension of cause of failure in a classical competing risk model where cause of failure is replaced by a continuous mark only observed at uncensored failure times. An example of the continuous mark variable is the genetic distance that measures dissimilarity between the infecting virus and the virus contained in the vaccine construct. In this article, we propose a novel mark-specific quantile regression model. The proposed estimation method borrows strength from data in a neighbourhood of a mark and is based on an induced smoothed estimation equation, which is very different from the existing methods for competing risk data with discrete causes. The asymptotic properties of the resulting estimators are established across mark and quantile continuums. In addition, a mark-specific quantile-type vaccine efficacy is proposed and its statistical inference procedures are developed. Simulation studies are conducted to evaluate the finite sample performances of the proposed estimation and hypothesis testing procedures. An application to the first HIV vaccine efficacy trial is provided. 
    more » « less
  3. Fan, Yanan; Nott, David; Smith, Michael S; Dortet-Bernadet, Jean-Luc. (Ed.)
    Quantile regression is widely seen as an ideal tool to understand complex predictor-response relations. Its biggest promise rests in its ability to quantify whether and how predictor effects vary across response quantile levels. But this promise has not been fully met due to a lack of statistical estimation methods that perform a rigorous, joint analysis of all quantile levels. This gap has been recently bridged by Yang and Tokdar [18]. Here we demonstrate how their joint quantile regression method, as encoded in the R package qrjoint, offers a comprehensive and model-based regression analysis framework. This chapter is an R vignette where we illustrate how to fit models, interpret coefficients, improve and compare models and obtain predictions under this framework. Our case study is an application to ecology where we analyse how the abundance of red maple trees depends on topographical and geographical features of the location. A complete absence of the species contributes excess zeros in the response data. We treat such excess zeros as left censoring in the spirit of a Tobit regression analysis. By utilising the generative nature of the joint quantile regression model, we not only adjust for censoring but also treat it as an object of independent scientific interest. 
    more » « less
  4. Growth curve models have been widely used to analyse longitudinal data in social and behavioural sciences. Although growth curve models with normality assumptions are relatively easy to estimate, practical data are rarely normal. Failing to account for non‐normal data may lead to unreliable model estimation and misleading statistical inference. In this work, we propose a robust approach for growth curve modelling using conditional medians that are less sensitive to outlying observations. Bayesian methods are applied for model estimation and inference. Based on the existing work on Bayesian quantile regression using asymmetric Laplace distributions, we use asymmetric Laplace distributions to convert the problem of estimating a median growth curve model into a problem of obtaining the maximum likelihood estimator for a transformed model. Monte Carlo simulation studies have been conducted to evaluate the numerical performance of the proposed approach with data containing outliers or leverage observations. The results show that the proposed approach yields more accurate and efficient parameter estimates than traditional growth curve modelling. We illustrate the application of our robust approach using conditional medians based on a real data set from the Virginia Cognitive Aging Project. 
    more » « less
  5. Abstract With advances in biomedical research, biomarkers are becoming increasingly important prognostic factors for predicting overall survival, while the measurement of biomarkers is often censored due to instruments' lower limits of detection. This leads to two types of censoring: random censoring in overall survival outcomes and fixed censoring in biomarker covariates, posing new challenges in statistical modeling and inference. Existing methods for analyzing such data focus primarily on linear regression ignoring censored responses or semiparametric accelerated failure time models with covariates under detection limits (DL). In this paper, we propose a quantile regression for survival data with covariates subject to DL. Comparing to existing methods, the proposed approach provides a more versatile tool for modeling the distribution of survival outcomes by allowing covariate effects to vary across conditional quantiles of the survival time and requiring no parametric distribution assumptions for outcome data. To estimate the quantile process of regression coefficients, we develop a novel multiple imputation approach based on another quantile regression for covariates under DL, avoiding stringent parametric restrictions on censored covariates as often assumed in the literature. Under regularity conditions, we show that the estimation procedure yields uniformly consistent and asymptotically normal estimators. Simulation results demonstrate the satisfactory finite‐sample performance of the method. We also apply our method to the motivating data from a study of genetic and inflammatory markers of Sepsis. 
    more » « less