Alas, coordinated hate attacks, or raids, are becoming increasingly common online. In a nutshell, these are perpetrated by a group of aggressors who organize and coordinate operations on a platform (e.g., 4chan) to target victims on another community (e.g., YouTube). In this paper, we focus on attributing raids to their source community, paving the way for moderation approaches that take the context (and potentially the motivation) of an attack into consideration.We present TUBERAIDER, an attribution system achieving over 75% accuracy in detecting and attributing coordinated hate attacks on YouTube videos. We instantiate it using links to YouTube videos shared on 4chan's /pol/ board, r/The_Donald, and 16 Incels-related subreddits. We use a peak detector to identify a rise in the comment activity of a YouTube video, which signals that an attack may be occurring. We then train a machine learning classifier based on the community language (i.e., TF-IDF scores of relevant keywords) to perform the attribution. We test TUBERAIDER in the wild and present a few case studies of actual aggression attacks identified by it to showcase its effectiveness.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 31, 2025
-
Previous research has documented the existence of both online echo chambers and hostile intergroup interactions. In this paper, we explore the relationship between these two phenomena by studying the activity of 5.97M Reddit users and 421M comments posted over 13 years. We examine whether users who are more engaged in echo chambers are more hostile when they comment on other communities. We then create a typology of relationships between political communities based on whether their users are toxic to each other, whether echo chamber-like engagement with these communities has a polarizing effect, and on the communities' political leanings. We observe both the echo chamber and hostile intergroup interaction phenomena, but neither holds universally across communities. Contrary to popular belief, we find that polarizing and toxic speech is more dominant between communities on the same, rather than opposing, sides of the political spectrum, especially on the left; however, this mostly points to the collective targeting of political outgroups.
-
The QAnon conspiracy theory claims that a cabal of (literally) blood-thirsty politicians and media personalities are engaged in a war to destroy society. By interpreting cryptic “drops” of information from an anonymous insider calling themself Q, adherents of the conspiracy theory believe that Donald Trump is leading them in an active fight against this cabal. QAnon has been covered extensively by the media, as its adherents have been involved in multiple violent acts, including the January 6th, 2021 seditious storming of the US Capitol building. Nevertheless, we still have relatively little understanding of how the theory evolved and spread on the Web, and the role played in that by multiple platforms.To address this gap, we study QAnon from the perspective of “Q” themself. We build a dataset of 4,949 canonical Q drops collected from six “aggregation sites,” which curate and archive them from their original posting to anonymous and ephemeral image boards. We expose that these sites have a relatively low (overall) agreement, and thus at least some Q drops should probably be considered apocryphal. We then analyze the Q drops’ contents to identify topics of discussion and find statistically significant indications that drops were not authored by a single individual. Finally, we look at how posts on Reddit are used to disseminate Q drops to wider audiences. We find that dissemination was (initially) limited to a few sub-communities and that, while heavy-handed moderation decisions have reduced the overall issue, the “gospel” of Q persists on the Web.more » « less
-
Growing evidence points to recurring influence campaigns on social media, often sponsored by state actors aiming to manipulate public opinion on sensitive political topics. Typically, campaigns are performed through instrumented accounts, known as troll accounts; despite their prominence, however, little work has been done to detect these accounts in the wild. In this paper, we present TROLLMAGNIFIER, a detection system for troll accounts. Our key observation, based on analysis of known Russian sponsored troll accounts identified by Reddit, is that they show loose coordination, often interacting with each other to further specific narratives. Therefore, troll accounts controlled by the same actor often show similarities that can be leveraged for detection. TROLLMAGNIFIER learns the typical behavior of known troll accounts and identifies more that behave similarly. We train TROLLMAGNIFIER on a set of 335 known troll accounts and run it on a large dataset of Reddit accounts. Our system identifies 1,248 potential troll accounts; we then provide a multi-faceted analysis to corroborate the correctness of our classification. In particular, 66% of the detected accounts show signs of being instrumented by malicious actors (e.g., they were created on the same exact day as a known troll, they have since been suspended by Reddit, etc.). They also discuss similar topics as the known troll accounts and exhibit temporal synchronization in their activity. Overall, we show that using TROLLMAGNIFIER, one can grow the initial knowledge of potential trolls provided by Reddit by over 300%.more » « less