Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Recent studies have revealed the presence of a complex freshwater system underlying the Aurora Subglacial Basin (ASB), a region of East Antarctica that contains ∼7 m of global sea level potential in ice mainly grounded below sea level. However, the impact that subglacial freshwater has on driving the evolution of the dynamic outlet glaciers that drain this basin has yet to be tested in a coupled ice sheet‐subglacial hydrology numerical modeling framework. Here, we project the evolution of the primary outlet glaciers draining the ASB (Moscow University Ice Shelf, Totten, Vanderford, and Adams Glaciers) in response to an evolving subglacial hydrology system and to ocean forcing through 2100, following low and high CMIP6 emission scenarios. By 2100, ice‐hydrology feedbacks enhance the ASB's 2100 sea level contribution by ∼30% (7.50–9.80 mm) in high emission scenarios and accelerate the retreat of Totten Glacier's main ice stream by 25 years. Ice‐hydrology feedbacks are particularly influential in the retreat of the Vanderford and Adams Glaciers, driving an additional 10 km of retreat in fully coupled simulations relative to uncoupled simulations. Hydrology‐driven ice shelf melt enhancements are the primary cause of domain‐wide mass loss in low emission scenarios, but are secondary to ice sheet frictional feedbacks under high emission scenarios. The results presented here demonstrate that ice‐subglacial hydrology interactions can significantly accelerate retreat of dynamic Antarctic glaciers and that future Antarctic sea level assessments that do not take these interactions into account might be severely underestimating Antarctic Ice Sheet mass loss.more » « less
-
Abstract The recent discovery of warm ocean water near the Totten Ice Shelf (TIS) has increased attention to the Sabrina Coast in East Antarctica. We report the result of 6‐day helicopter‐based observations conducted during the 61st Japanese Antarctic Research Expedition (JARE61), revealing warm ocean water (0.5–1°C) occupying a large previously unsampled area of the Sabrina Coast (116.5°E−120°E) below 550–600 m. Along the TIS front, we observe modified Circumpolar Deep Water (mCDW) well above freezing (∼−0.7°C), consistent with previous work. We identify glacial meltwater outflow from the TIS cavity west of 116°E. No signs of mCDW intrusions toward the Moscow University Ice Shelf cavity are observed; however, those observations were limited to only two shallow (∼330 m) profiles. We also highlight the advantages of helicopter‐based observations for accessibility, speed, maneuverability, and cost‐efficiency. The combination of ship‐ and helicopter‐based observations using the JARE61 approach will increase the potential of future polar oceanographic observations.more » « less
-
Abstract The Totten Glacier in East Antarctica, with an ice volume equivalent to >3.5 m of global sea-level rise, is grounded below sea level and, therefore, vulnerable to ocean forcing. Here, we use bathymetric and oceanographic observations from previously unsampled parts of the Totten continental shelf to reveal on-shelf warm water pathways defined by deep topographic features. Access of warm water to the Totten Ice Shelf (TIS) cavity is facilitated by a deep shelf break, a broad and deep depression on the shelf, a cyclonic circulation that carries warm water to the inner shelf, and deep troughs that provide direct access to the TIS cavity. The temperature of the warmest water reaching the TIS cavity varies by ~0.8 °C on an interannual timescale. Numerical simulations constrained by the updated bathymetry demonstrate that the deep troughs play a critical role in regulating ocean heat transport to the TIS cavity and the subsequent basal melt of the ice shelf.more » « less
-
Abstract The bathymetry under the Amery Ice Shelf steers the flow of ocean currents transporting ocean heat, and thus is a prerequisite for precise modeling of ice‐ocean interactions. However, hampered by thick ice, direct observations of sub‐ice‐shelf bathymetry are rare, limiting our ability to quantify the evolution of this sector and its future contribution to global mean sea level rise. We estimated the bathymetry of this region from airborne gravity anomaly using simulated annealing. Unlike the current model which shows a comparatively flat seafloor beneath the calving front, our estimation results reveal a 255‐m‐deep shoal at the western side and a 1,050‐m‐deep trough at the eastern side, which are important topographic features controlling the ocean heat transport into the sub‐ice cavity. The new model also reveals previously unknown depressions and sills that are critical to an improved modeling of the sub‐ice‐shelf ocean circulation and induced basal melting.more » « less
-
Abstract. Ice shelf dynamics and morphology play an important role in the stability of floating bodies of ice by driving fracturing that can lead to calving, in turn impacting the ability of the ice shelf to buttress upstream grounded ice. Following a 2016 calving event at the Nansen Ice Shelf (NIS), East Antarctica, we collected airborne and ground-based radar data to map ice thickness across the shelf. We combine these data with published satellite-derived data to examine the spatial variations in ice shelf draft, the cause and effects of ice shelf strain rates, and the possibility that a suture zone may be channelizing ocean water and altering patterns of sub-ice-shelf melt and freeze-on. We also use our datasets to assess limitations that may arise from relying on hydrostatic-balance equations applied to ice surface elevation to determine ice draft morphology. We find that the Nansen Ice Shelf has a highly variable basal morphology driven primarily by the formation of basal fractures near the onset of the ice shelf suture zone. This morphology is reflected in the ice shelf strain rates but not in the calculated hydrostatic-balance thickness, which underestimates the scale of variability at the ice shelf base. Enhanced melt rates near the ice shelf terminus and in steep regions of the channelized suture zone, along with relatively thin ice in the suture zone, appear to represent vulnerable areas in the NIS. This morphology, combined with ice dynamics, induce strain that has led to the formation of transverse fractures within the suture zone, resulting in large-scale calving events. Similar transverse fractures at other Antarctic ice shelves may also be driven by highly variable morphology, and predicting their formation and evolution could aid projections of ice shelf stability.more » « less
-
Ice shelf basal melting is the primary mechanism driving mass loss from the Antarctic Ice Sheet, yet it is unknown how the localized melt enhancement from subglacial discharge will affect future Antarctic glacial retreat. We develop a parameterization of ice shelf basal melt that accounts for both ocean and subglacial discharge forcing and apply it in future projections of Denman and Scott Glaciers, East Antarctica, through 2300. In forward simulations, subglacial discharge accelerates the onset of retreat of these systems into the deepest continental trench on Earth by 25 years. During this retreat, Denman Glacier alone contributes 0.33 millimeters per year to global sea level rise, comparable to half of the contemporary sea level contribution of the entire Antarctic Ice Sheet. Our results stress the importance of resolving complex interactions between the ice, ocean, and subglacial environments in future Antarctic Ice Sheet projections.more » « less
-
Abstract. One of the key components of this research has been the mapping of Antarctic bed topography and ice thickness parameters that are crucial for modelling ice flow and hence for predicting future ice loss andthe ensuing sea level rise. Supported by the Scientific Committee on Antarctic Research (SCAR), the Bedmap3 Action Group aims not only to produce newgridded maps of ice thickness and bed topography for the internationalscientific community, but also to standardize and make available all thegeophysical survey data points used in producing the Bedmap griddedproducts. Here, we document the survey data used in the latest iteration,Bedmap3, incorporating and adding to all of the datasets previously used forBedmap1 and Bedmap2, including ice bed, surface and thickness point data from all Antarctic geophysical campaigns since the 1950s. More specifically,we describe the processes used to standardize and make these and futuresurveys and gridded datasets accessible under the Findable, Accessible, Interoperable, and Reusable (FAIR) data principles. With the goals of making the gridding process reproducible and allowing scientists to re-use the data freely for their own analysis, we introduce the new SCAR Bedmap Data Portal(https://bedmap.scar.org, last access: 1 March 2023) created to provideunprecedented open access to these important datasets through a web-map interface. We believe that this data release will be a valuable asset to Antarctic research and will greatly extend the life cycle of the data heldwithin it. Data are available from the UK Polar Data Centre: https://data.bas.ac.uk (last access: 5 May 2023). See the Data availability section for the complete list of datasets.more » « less
-
Abstract. The discovery of Antarctica's deepest subglacial troughbeneath the Denman Glacier, combined with high rates of basal melt at thegrounding line, has caused significant concern over its vulnerability toretreat. Recent attention has therefore been focusing on understanding thecontrols driving Denman Glacier's dynamic evolution. Here we consider theShackleton system, comprised of the Shackleton Ice Shelf, Denman Glacier,and the adjacent Scott, Northcliff, Roscoe and Apfel glaciers, about whichalmost nothing is known. We widen the context of previously observed dynamicchanges in the Denman Glacier to the wider region of the Shackleton system,with a multi-decadal time frame and an improved biannual temporal frequencyof observations in the last 7 years (2015–2022). We integrate newsatellite observations of ice structure and airborne radar data with changesin ice front position and ice flow velocities to investigate changes in thesystem. Over the 60-year period of observation we find significant riftpropagation on the Shackleton Ice Shelf and Scott Glacier and notablestructural changes in the floating shear margins between the ice shelf andthe outlet glaciers, as well as features indicative of ice with elevatedsalt concentration and brine infiltration in regions of the system. Over theperiod 2017–2022 we observe a significant increase in ice flow speed (up to50 %) on the floating part of Scott Glacier, coincident with small-scalecalving and rift propagation close to the ice front. We do not observe anyseasonal variation or significant change in ice flow speed across the restof the Shackleton system. Given the potential vulnerability of the system toaccelerating retreat into the overdeepened, potentially sediment-filledbedrock trough, an improved understanding of the glaciological,oceanographic and geological conditions in the Shackleton system arerequired to improve the certainty of numerical model predictions, and weidentify a number of priorities for future research. With access to theseremote coastal regions a major challenge, coordinated internationallycollaborative efforts are required to quantify how much the Shackletonregion is likely to contribute to sea level rise in the coming centuries.more » « less
-
The Princess Elizabeth Land sector of the East Antarctic Ice Sheet is a significant reservoir of grounded ice and is adjacent to regions that experienced great change during Quaternary glacial cycles and Pliocene warm episodes. The existence of an extensive subglacial water system in Princess Elizabeth Land (to date only inferred from satellite imagery) bears the potential to significantly impact the thermal and kinematic conditions of the overlying ice sheet. We confirm the existence of a major subglacial lake, herein referred to as Lake Snow Eagle (LSE), for the first time using recently acquired aerogeophysical data. We systematically investigated LSE’s geological characteristics and bathymetry from two-dimensional geophysical inversion models. The inversion results suggest that LSE is located along a compressional geologic boundary, which provides reference for future characterization of the geologic and tectonic context of this region. We estimate LSE to be ~42 km in length and 370 km2 in area, making it one of the largest subglacial lakes in Antarctica. Additionally, the airborne ice-penetrating radar observations and geophysical inversions reveal a layer of unconsolidated water-saturated sediment around and at the bottom of LSE, which—given the ultralow rates of sedimentation expected in such environments—may archive valuable records of paleoenvironmental changes and the early history of East Antarctic Ice Sheet evolution in Princess Elizabeth Land.more » « less