skip to main content

Search for: All records

Award ID contains: 2114825

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Motivated by the recent excitement around the physics of twisted transition metal dichalcogenide (TMD) multilayer systems, we study strongly correlated phases of TMD heterobilayers under the influence of light. We consider both waveguide light and circularly polarized light. The former allows for longitudinally polarized light, which in the high frequency limit can be used to selectively modify interlayer hoppings in a tight-binding model. We argue based on quasi-degenerate perturbation theory that changes to the interlayer hoppings can be captured as a modulation to the strength of the moiré potential in a continuum model. As a consequence, waveguide light can be used to drive transitions between a myriad of different magnetic phases, including a transition from a 120 ∘ Neel phase to a stripe ordered magnetic phase, or from a spin density wave phase to a paramagnetic phase, among others. When the system is subjected to circularly polarized light we find that the effective mass of the active TMD layer is modified by an applied electromagnetic field. By simultaneously applying waveguide light and circularly polarized light to a system, one has a high level of control in moving through the phase diagram in-situ. Lastly, we comment on the experimental feasibilitymore »of Floquet state preparation and argue that it is within reach of available techniques when the system is coupled to a judiciously chosen bath.« less
    Free, publicly-accessible full text available December 23, 2023
  2. Abstract Electron band topology is combined with intrinsic magnetic orders in MnBi 2 Te 4 , leading to novel quantum phases. Here we investigate collective spin excitations (i.e. magnons) and spin fluctuations in atomically thin MnBi 2 Te 4 flakes using Raman spectroscopy. In a two-septuple layer with non-trivial topology, magnon characteristics evolve as an external magnetic field tunes the ground state through three ordered phases: antiferromagnet, canted antiferromagnet, and ferromagnet. The Raman selection rules are determined by both the crystal symmetry and magnetic order while the magnon energy is determined by different interaction terms. Using non-interacting spin-wave theory, we extract the spin-wave gap at zero magnetic field, an anisotropy energy, and interlayer exchange in bilayers. We also find magnetic fluctuations increase with reduced thickness, which may contribute to a less robust magnetic order in single layers.
    Free, publicly-accessible full text available December 1, 2023
  3. Free, publicly-accessible full text available July 1, 2023
  4. Illuminating materials with lasers can create intriguing magnetic and topological states of matter..
    Free, publicly-accessible full text available May 1, 2023
  5. Free, publicly-accessible full text available April 1, 2023