Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Extracting quadrilateral layouts from surface triangulations is an important step in texture mapping, semi-structured quadrilateral meshing for traditional analysis and spline reconstruction for isogeometric analysis. Current methods struggle to yield high-quality layouts with appropriate connectivity between singular nodes (known as “extraordinary points” for spline representations) without resorting to either mixed-integer optimization or manual constraint prescription. The first of these is computationally expensive and comes with no guarantees, while the second is laborious and error-prone. In this work, we rigorously characterize curves in a quadrilateral layout up to homotopy type and use this information to quickly define high-quality connectivity constraints between singular nodes. The mathematical theory is accompanied by appropriate computational algorithms. The efficacy of the proposed method is demonstrated in generating quadrilateral layouts on the United States Army’s DEVCOM Generic Hull vehicle and parts of a bilinear quadrilateral finite element mesh (with some linear triangles) of a 1996 Dodge Neon.more » « less
- 
            Wang, Linwei; Dou, Qi; Fletcher, P. Thomas; Speidel, Stefanie; Li, Shuo (Ed.)We presented a novel radiomics approach using multimodality MRI to predict the expression of an oncogene (O6-Methylguanine-DNA methyltransferase, MGMT) and overall survival (OS) of glioblastoma (GBM) patients. Specifically, we employed an EffNetV2-T, which was down scaled and modified from EfficientNetV2, as the feature extractor. Besides, we used evidential layers based to control the distribution of prediction outputs. The evidential layers help to classify the high-dimensional radiomics features to predict the methylation status of MGMT and OS. Tests showed that our model achieved an accuracy of 0.844, making it possible to use as a clinic-enabling technique in the diagnosing and management of GBM. Comparison results indicated that our method performed better than existing work.more » « less
- 
            In this work we present a framework of designing iterative techniques for image deblurring in inverse problem. The new framework is based on two observations about existing methods. We used Landweber method as the basis to develop and present the new framework but note that the framework is applicable to other iterative techniques. First, we observed that the iterative steps of Landweber method consist of a constant term, which is a low-pass filtered version of the already blurry observation. We proposed a modification to use the observed image directly. Second, we observed that Landweber method uses an estimate of the true image as the starting point. This estimate, however, does not get updated over iterations. We proposed a modification that updates this estimate as the iterative process progresses. We integrated the two modifications into one framework of iteratively deblurring images. Finally, we tested the new method and compared its performance with several existing techniques, including Landweber method, Van Cittert method, GMRES (generalized minimal residual method), and LSQR (least square), to demonstrate its superior performance in image deblurring.more » « less
- 
            In this review paper, we first provide comprehensive tutorials on two classical methods of polygon-based computer-generated holography: the traditional method (also called the fast-Fourier-transform-based method) and the analytical method. Indeed, other modern polygon-based methods build on the idea of the two methods. We will then present some selective methods with recent developments and progress and compare their computational reconstructions in terms of calculation speed and image quality, among other things. Finally, we discuss and propose a fast analytical method called the fast 3D affine transformation method, and based on the method, we present a numerical reconstruction of a computer-generated hologram (CGH) of a 3D surface consisting of 49,272 processed polygons of the face of a real person without the use of graphic processing units; to the best of our knowledge, this represents a state-of-the-art numerical result in polygon-based computed-generated holography. Finally, we also show optical reconstructions of such a CGH and another CGH of the Stanford bunny of 59,996 polygons with 31,724 processed polygons after back-face culling. We hope that this paper will bring out some of the essence of polygon-based computer-generated holography and provide some insights for future research.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available