skip to main content


Search for: All records

Award ID contains: 2115200

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This work develops a novel set of algorithms, al- ternating Gradient Descent (GD) and minimization for MRI (altGDmin-MRI1 and altGDmin-MRI2), for accelerated dynamic MRI by assuming an approximate low-rank (LR) model on the matrix formed by the vectorized images of the sequence. The LR model itself is well-known in the MRI literature; our contribution is the novel GD-based algorithms which are much faster, memory-efficient, and ‘general’ compared with existing work; and careful use of a 3-level hierarchical LR model. By ‘general’, we mean that, with a single choice of parameters, our method provides accurate reconstructions for multiple acceler- ated dynamic MRI applications, multiple sampling rates and sampling schemes. We show that our methods outperform many of the popular existing approaches while also being faster than all of them, on average. This claim is based on comparisons on 8 different retrospectively undersampled multi-coil dynamic MRI applications, sampled using either 1D Cartesian or 2D pseudo- radial undersampling, at multiple sampling rates. Evaluations on some prospectively undersampled datasets are also provided. Our second contribution is a mini-batch subspace tracking extension that can process new measurements and return reconstructions within a short delay after they arrive. The recovery algorithm itself is also faster than its batch counterpart. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  2. Free, publicly-accessible full text available June 25, 2024
  3. Free, publicly-accessible full text available June 25, 2024