skip to main content

Search for: All records

Award ID contains: 2116216

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Global warming is one of the world’s most pressing issues. The study of its effects on the polar ice caps and other arctic environments, however, can be hindered by the often dangerous and difficult to navigate terrain found there. Multi-terrain autonomous vehicles can assist researchers by providing a mobile platform on which to collect data in these harsh environments while avoiding any risk to human life and speeding up the research process. The mechanical design and ultimate efficacy of these autonomous robotic vehicles depends largely on the specific missions they are deployed for, but terrain conditions can vary wildly geographically as well as seasonally, making mission planning for these unmanned vehicles more difficult. This paper proposes the use of various UNet-based neural network architectures to generate digital elevation maps from satellite images, and explores and compares their efficacy on a single set of training and validation datasets generated from satellite imagery. These digital elevation maps generated by the model could be used by researchers not only to track the change in arctic topography over time, but to quickly provide autonomous exploratory research rovers with the topographical information necessary to decide on optimal paths during the mission. This paper analyzes different model architectures and training schemes: a traditional UNet, a traditional UNet with data augmentation, a UNet with a single active skip-layer vision transformer (ViT), and a UNet with multiple active skip-layer ViT. Each model was trained on a dataset of satellite images and corresponding digital elevation maps of Ellesmere Island, Canada. Utilizing ViTs did not demonstrate a significant improvement in UNet performance, though this could change with longer training. This paper proposes opportunities to improve performance for these neural networks, as well as next steps for further research, including improving the diversity of images in the dataset, generating a testing dataset from a completely different geographic location, and allowing the models more time to train. 
    more » « less