skip to main content


Search for: All records

Award ID contains: 2116863

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Climate change and increased fire are eroding theresilience of boreal forests. This is problematic because boreal vegetationand the cold soils underneath store approximately 30 % of all terrestrialcarbon. Society urgently needs projections of where, when, and why borealforests are likely to change. Permafrost (i.e., subsurface material thatremains frozen for at least 2 consecutive years) and the thicksoil-surface organic layers (SOLs) that insulate permafrost are importantcontrols of boreal forest dynamics and carbon cycling. However, both arerarely included in process-based vegetation models used to simulate futureecosystem trajectories. To address this challenge, we developed acomputationally efficient permafrost and SOL module named the Permafrost andOrganic LayEr module for Forest Models (POLE-FM) that operates at finespatial (1 ha) and temporal (daily) resolutions. The module mechanisticallysimulates daily changes in depth to permafrost, annual SOL accumulation, andtheir complex effects on boreal forest structure and functions. We coupledthe module to an established forest landscape model, iLand, and benchmarkedthe model in interior Alaska at spatial scales of stands (1 ha) tolandscapes (61 000 ha) and over temporal scales of days to centuries. Thecoupled model generated intra- and inter-annual patterns of snowaccumulation and active layer depth (portion of soil column that thawsthroughout the year) generally consistent with independent observations in17 instrumented forest stands. The model also represented the distributionof near-surface permafrost presence in a topographically complex landscape.We simulated 39.3 % of forested area in the landscape as underlain bypermafrost, compared to the estimated 33.4 % from the benchmarkingproduct. We further determined that the model could accurately simulate mossbiomass, SOL accumulation, fire activity, tree species composition, andstand structure at the landscape scale. Modular and flexible representationsof key biophysical processes that underpin 21st-century ecologicalchange are an essential next step in vegetation simulation to reduceuncertainty in future projections and to support innovative environmentaldecision-making. We show that coupling a new permafrost and SOL module to anexisting forest landscape model increases the model's utility for projectingforest futures at high latitudes. Process-based models that representrelevant dynamics will catalyze opportunities to address previouslyintractable questions about boreal forest resilience, biogeochemicalcycling, and feedbacks to regional and global climate.

     
    more » « less