skip to main content


Title: The Permafrost and Organic LayEr module for Forest Models (POLE-FM) 1.0

Abstract. Climate change and increased fire are eroding theresilience of boreal forests. This is problematic because boreal vegetationand the cold soils underneath store approximately 30 % of all terrestrialcarbon. Society urgently needs projections of where, when, and why borealforests are likely to change. Permafrost (i.e., subsurface material thatremains frozen for at least 2 consecutive years) and the thicksoil-surface organic layers (SOLs) that insulate permafrost are importantcontrols of boreal forest dynamics and carbon cycling. However, both arerarely included in process-based vegetation models used to simulate futureecosystem trajectories. To address this challenge, we developed acomputationally efficient permafrost and SOL module named the Permafrost andOrganic LayEr module for Forest Models (POLE-FM) that operates at finespatial (1 ha) and temporal (daily) resolutions. The module mechanisticallysimulates daily changes in depth to permafrost, annual SOL accumulation, andtheir complex effects on boreal forest structure and functions. We coupledthe module to an established forest landscape model, iLand, and benchmarkedthe model in interior Alaska at spatial scales of stands (1 ha) tolandscapes (61 000 ha) and over temporal scales of days to centuries. Thecoupled model generated intra- and inter-annual patterns of snowaccumulation and active layer depth (portion of soil column that thawsthroughout the year) generally consistent with independent observations in17 instrumented forest stands. The model also represented the distributionof near-surface permafrost presence in a topographically complex landscape.We simulated 39.3 % of forested area in the landscape as underlain bypermafrost, compared to the estimated 33.4 % from the benchmarkingproduct. We further determined that the model could accurately simulate mossbiomass, SOL accumulation, fire activity, tree species composition, andstand structure at the landscape scale. Modular and flexible representationsof key biophysical processes that underpin 21st-century ecologicalchange are an essential next step in vegetation simulation to reduceuncertainty in future projections and to support innovative environmentaldecision-making. We show that coupling a new permafrost and SOL module to anexisting forest landscape model increases the model's utility for projectingforest futures at high latitudes. Process-based models that representrelevant dynamics will catalyze opportunities to address previouslyintractable questions about boreal forest resilience, biogeochemicalcycling, and feedbacks to regional and global climate.

 
more » « less
Award ID(s):
2116863 2224776 1636476
NSF-PAR ID:
10466858
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Geoscientific Model Development
Date Published:
Journal Name:
Geoscientific Model Development
Volume:
16
Issue:
7
ISSN:
1991-9603
Page Range / eLocation ID:
2011 to 2036
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Conifer forests historically have been resilient to wildfires in part due to thick organic soil layers that regulate combustion and post-fire moisture and vegetation change. However, recent shifts in fire activity in western North America may be overwhelming these resilience mechanisms with potential impacts for energy and carbon exchange. Here, we quantify the long-term recovery of the organic soil layer and its carbon pools across 511 forested plots. Our plots span ~ 140,000 km2 across two ecozones of the Northwest Territories, Canada, and allowed us to investigate the impacts of time-after-fire, site moisture class, and dominant canopy type on soil organic layer thickness and associated carbon stocks. Despite thinner soil organic layers in xeric plots immediately after fire, these drier stands supported faster post-fire recovery of the soil organic layer than in mesic plots. Unlike xeric or mesic stands, post-fire soil carbon accumulation rates in hydric plots were negligible despite wetter forested plots having greater soil organic carbon stocks immediately post-fire compared to other stands. While permafrost and high-water tables inhibit combustion and maintain thick organic soils immediately after fire, our results suggest that these wet stands are not recovering their pre-fire carbon stocks on a century timescale. We show that canopy conversion from black spruce to jack pine or deciduous dominance could reduce organic soil carbon stocks by 60–80% depending on stand age. Our two main findings—decreasing organic soil carbon storage with increasing deciduous cover and the lack of post-fire SOL recovery in hydric sites—have implications for the turnover time of carbon stocks in the western boreal forest region and also will impact energy fluxes by controlling albedo and surface soil moisture. 
    more » « less
  2. Abstract

    Fire frequency is increasing with climate warming in the boreal regions of interior Alaska, with short fire return intervals (< 50 years) becoming more common. Recent studies suggest these “reburns” will reduce the insulating surface organic layer (SOL) and seedbanks, inhibiting black spruce regeneration and increasing deciduous cover. These changes are projected to amplify soil warming, increasing mineral soil organic carbon (SOC) decomposition rates, and impair re-establishment of understorey vegetation and the SOL. We examined how reburns changed soil temperature, heterotrophic soil respiration (RH), and understorey gross primary production (GPP), and related these to shifts in vegetation composition and SOL depths. Two distinct burn complexes previously covered by spruce were measured; both included areas burned 1x, 2x, and 3x over 60 years and mature (≈ 90 year old) spruce forests underlain by permafrost. A 2.7 °C increase in annual near-surface soil temperatures from 1x to 3x burns was correlated with a decrease in SOL depths and a 1.9 Mg C ha−1increase in annual RH efflux. However, near-surface soil warming accounted for ≤ 23% of higher RH efflux; increases in deciduous overstorey vegetation and root biomass with reburning better correlated with RH than soil temperature. Reburning also warmed deeper soils and reduced the biomass and GPP of understory plants, lessening their potential to offset elevated RH and contribute to SOL development. This suggests that reburning led to losses of mineral SOC previously stored in permafrost due to warming soils and changes in vegetation composition, illustrating how burn frequency creates pathways for accelerated regional C loss.

     
    more » « less
  3. null (Ed.)
    Abstract. Permafrost soils store between 1330 and 1580 Pg carbon (C), which is 3 times the amount of C in global vegetation, almost twice the amount of C in the atmosphere, and half of the global soil organic C pool. Despite the massive amount of C in permafrost, estimates of soil C storage in the high-latitude permafrost region are highly uncertain, primarily due to undersampling at all spatial scales; circumpolar soil C estimates lack sufficient continental spatial diversity, regional intensity, and replication at the field-site level. Siberian forests are particularly undersampled, yet the larch forests that dominate this region may store more than twice as much soil C as all other boreal forest types in the continuous permafrost zone combined. Here we present above- and belowground C stocks from 20 sites representing a gradient of stand age and structure in a larch watershed of the Kolyma River, near Chersky, Sakha Republic, Russia. We found that the majority of C stored in the top 1 m of the watershed was stored belowground (92 %), with 19 % in the top 10 cm of soil and 40 % in the top 30 cm. Carbon was more variable in surface soils (10 cm; coefficient of variation (CV)  =  0.35 between stands) than in the top 30 cm (CV  =  0.14) or soil profile to 1 m (CV  =  0.20). Combined active-layer and deep frozen deposits (surface – 15 m) contained 205 kg C m−2 (yedoma, non-ice wedge) and 331 kg C m−2 (alas), which, even when accounting for landscape-level ice content, is an order of magnitude more C than that stored in the top meter of soil and 2 orders of magnitude more C than in aboveground biomass. Aboveground biomass was composed of primarily larch (53 %) but also included understory vegetation (30 %), woody debris (11 %) and snag (6 %) biomass. While aboveground biomass contained relatively little (8 %) of the C stocks in the watershed, aboveground processes were linked to thaw depth and belowground C storage. Thaw depth was negatively related to stand age, and soil C density (top 10 cm) was positively related to soil moisture and negatively related to moss and lichen cover. These results suggest that, as the climate warms, changes in stand age and structure may be as important as direct climate effects on belowground environmental conditions and permafrost C vulnerability. 
    more » « less
  4. Wildfire activity is increasing in boreal forests as climate warms and dries, increasing risks to rural and urban communities. In black spruce forests of Interior Alaska, fuel reduction treatments are used to create a defensible space for fire suppression and slow fire spread. These treatments introduce novel disturbance characteristics, making longer-term outcomes on ecosystem structure and wildfire risk reduction uncertain. We remeasured a network of sites where fuels were reduced through hand thinning or mechanical shearblading in Interior Alaska to assess how successional trajectories of tree dominance, understory composition, and permafrost change over ∼ 20 years after treatment. We also assessed if these fuel reduction treatments reduce modeled surface rate of fire spread (ROS), flame length, and fireline intensity relative to an untreated black spruce stand, and if surface fire behavior changes over time. In thinned areas, soil organic layer (SOL) disturbance promoted tree seedling recruitment but did not change over time. In shearbladed sites, by contrast, both conifer and broad-leaved deciduous seedling density increased over time and deciduous seedlings were 20 times more abundant than spruce. Thaw depth increased over time in both treatments and was greatest in shearbladed sites with a thin SOL. Understory composition was not altered by thinning but in shearbladed treatments shifted from forbs and horsetail to tall deciduous shrubs and grasses over time. Modeled surface fire behavior was constant in shearbladed sites. This finding is inconsistent with expert opinion, highlighting the need for additional fuels-specific data to capture the changing vegetation structure. Treatment effectiveness at reducing modeled surface ROS, flame length, and fireline intensity depended on the fuel model used for an untreated black spruce stand, pointing to uncertainties about the efficacy of these treatments at mitigating surface fire behavior. Overall, we show that fuel reduction treatments can promote low flammability, deciduous tree dominated successional trajectories, and that shearblading has strong effects on understory composition and permafrost degradation that persist for nearly two decades after disturbance. Such factors need to be considered to enhance the design, management, and predictions of fire behavior in these treatments. 
    more » « less
  5. Abstract

    Climate and wildfire are closely linked. Climate regulates wildfire directly over short timescales through its effect on fuel aridity and indirectly over long timescales through vegetation productivity and the structure and abundance of fuels. Prediction of future wildfire regimes in a changing climate often uses empirical studies that presume current relationships between short‐term climate variables and wildfire activity will be stationary in the future. This is problematic because landscape‐scale wildfire dynamics exhibit non‐stationarity, with both positive and negative feedback loops that operate at different temporal and spatial scales. This requires that such feedbacks are accommodated in a model framework from which wildfire dynamics are emergent rather than pre‐specified. We use a new model, RHESSys‐WMFire, that integrates ecohydrology with fire spread and effects to simulate a 60‐yr time series of vegetation, fuel development, and wildfire in a 6572‐ha watershed in the Southern Sierra Nevada, USA, with a factorial design of increased temperature and severe drought. All climate scenarios had an initial pulse of elevated area burned associated with high temperature, low precipitation, and high fine fuel loading. There were positive correlations between annual area burned and mean annual maximum temperature and negative correlations with annual precipitation, consistent with understood direct effects of climate on wildfire in this system. Decreased vegetation productivity and increased fine fuel decomposition were predicted with increased temperature, resulting in long‐term reduced fine fuels and area burned relative to baseline. Repeated extreme drought increased area burned relative to baseline and over the long‐term had substantially reduced overstory biomass. Overstory biomass was resilient to repeat wildfire under baseline climate. The model system predicts that the short‐term direct effects of climate on wildfire can differ from long‐term indirect effects such that the simple maxim hotter/drier equals more wildfire can be both true and false, depending on scale.

     
    more » « less