Mountain meadows are an essential part of the alpine–subalpine ecosystem; they provide ecosystem services like pollination and are home to diverse plant communities. Changes in climate affect meadow ecology on multiple levels, for example, by altering growing season dynamics. Tracking the effects of climate change on meadow diversity through the impacts on individual species and overall growing season dynamics is critical to conservation efforts. Here, we explore how to combine crowd‐sourced camera images with machine learning to quantify flowering species richness across a range of elevations in alpine meadows located in Mt. Rainier National Park, Washington, USA. We employed three machine‐learning techniques (Mask R‐CNN, RetinaNet and YOLOv5) to detect wildflower species in images taken during two flowering seasons. We demonstrate that deep learning techniques can detect multiple species, providing information on flowering richness in photographed meadows. The results indicate higher richness just above the tree line for most of the species, which is comparable with patterns found using field studies. We found that the two‐stage detector Mask R‐CNN was more accurate than single‐stage detectors like RetinaNet and YOLO, with the Mask R‐CNN network performing best overall with mean average precision (mAP) of 0.67 followed by RetinaNet (0.5) and YOLO (0.4). We found that across the methods using anchor box variations in multiples of 16 led to enhanced accuracy. We also show that detection is possible even when pictures are interspersed with complex backgrounds and are not in focus. We found differential detection rates depending on species abundance, with additional challenges related to similarity in flower characteristics, labeling errors and occlusion issues. Despite these potential biases and limitations in capturing flowering abundance and location‐specific quantification, accuracy was notable considering the complexity of flower types and picture angles in this dataset. We, therefore, expect that this approach can be used to address many ecological questions that benefit from automated flower detection, including studies of flowering phenology and floral resources, and that this approach can, therefore, complement a wide range of ecological approaches (e.g., field observations, experiments, community science, etc.). In all, our study suggests that ecological metrics like floral richness can be efficiently monitored by combining machine learning with easily accessible publicly curated datasets (e.g., Flickr, iNaturalist).
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Integrating Artificial Intelligence (AI) techniques with remote sensing holds great potential for revolutionizing data analysis and applications in many domains of Earth sciences. This review paper synthesizes the existing literature on AI applications in remote sensing, consolidating and analyzing AI methodologies, outcomes, and limitations. The primary objectives are to identify research gaps, assess the effectiveness of AI approaches in practice, and highlight emerging trends and challenges. We explore diverse applications of AI in remote sensing, including image classification, land cover mapping, object detection, change detection, hyperspectral and radar data analysis, and data fusion. We present an overview of the remote sensing technologies, methods employed, and relevant use cases. We further explore challenges associated with practical AI in remote sensing, such as data quality and availability, model uncertainty and interpretability, and integration with domain expertise as well as potential solutions, advancements, and future directions. We provide a comprehensive overview for researchers, practitioners, and decision makers, informing future research and applications at the exciting intersection of AI and remote sensing.more » « less
-
Mountain snowpack provides critical water resources for forest and meadow ecosystems that are experiencing rapid change due to global warming. An accurate characterization of snowpack heterogeneity in these ecosystems requires snow cover observations at high spatial resolutions, yet most existing snow cover datasets have a coarse resolution. To advance our observation capabilities of snow cover in meadows and forests, we developed a machine learning model to generate snow-covered area (SCA) maps from PlanetScope imagery at about 3-m spatial resolution. The model achieves a median F1 score of 0.75 for 103 cloud-free images across four different sites in the Western United States and Switzerland. It is more accurate (F1 score = 0.82) when forest areas are excluded from the evaluation. We further tested the model performance across 7,741 mountain meadows at the two study sites in the Sierra Nevada, California. It achieved a median F1 score of 0.83, with higher accuracy for larger and simpler geometry meadows than for smaller and more complexly shaped meadows. While mapping SCA in regions close to or under forest canopy is still challenging, the model can accurately identify SCA for relatively large forest gaps (i.e., 15m < DCE < 27m), with a median F1 score of 0.87 across the four study sites, and shows promising accuracy for areas very close (>10m) to forest edges. Our study highlights the potential of high-resolution satellite imagery for mapping mountain snow cover in forested areas and meadows, with implications for advancing ecohydrological research in a world expecting significant changes in snow.more » « less
-
Abstract. The interpolation of geospatial phenomena is a common problem in Earth science applications that can be addressed with geostatistics, where spatial correlations are used to constrain interpolations. In certain applications, it can be particularly useful to a perform geostatistical simulation, which is used to generate multiple non-unique realizations that reproduce the variability in measurements and are constrained by observations. Despite the broad utility of this approach, there are few open-access geostatistical simulation software applications. To address this accessibility issue, we present GStatSim, a Python package for performing geostatistical interpolation and simulation. GStatSim is distinct from previous geostatistical tools in that it emphasizes accessibility for non-experts, geostatistical simulation, and applicability to remote sensing data sets. It includes tools for performing non-stationary simulations and interpolations with secondary constraints. This package is accompanied by a Jupyter Book with user tutorials and background information on different interpolation methods. These resources are intended to significantly lower the technological barrier to using geostatistics and encourage the use of geostatistics in a wider range of applications. We demonstrate the different functionalities of this tool for the interpolation of subglacial topography measurements in Greenland.more » « less
-
Improving high-resolution (meter-scale) mapping of snow-covered areas in complex and forested terrains is critical to understanding the responses of species and water systems to climate change. Commercial high-resolution imagery from Planet Labs, Inc. (Planet, San Francisco, CA, USA) can be used in environmental science, as it has both high spatial (0.7–3.0 m) and temporal (1–2 day) resolution. Deriving snow-covered areas from Planet imagery using traditional radiometric techniques have limitations due to the lack of a shortwave infrared band that is needed to fully exploit the difference in reflectance to discriminate between snow and clouds. However, recent work demonstrated that snow cover area (SCA) can be successfully mapped using only the PlanetScope 4-band (Red, Green, Blue and NIR) reflectance products and a machine learning (ML) approach based on convolutional neural networks (CNN). To evaluate how additional features improve the existing model performance, we: (1) build on previous work to augment a CNN model with additional input data including vegetation metrics (Normalized Difference Vegetation Index) and DEM-derived metrics (elevation, slope and aspect) to improve SCA mapping in forested and open terrain, (2) evaluate the model performance at two geographically diverse sites (Gunnison, Colorado, USA and Engadin, Switzerland), and (3) evaluate the model performance over different land-cover types. The best augmented model used the Normalized Difference Vegetation Index (NDVI) along with visible (red, green, and blue) and NIR bands, with an F-score of 0.89 (Gunnison) and 0.93 (Engadin) and was found to be 4% and 2% better than when using canopy height- and terrain-derived measures at Gunnison, respectively. The NDVI-based model improves not only upon the original band-only model’s ability to detect snow in forests, but also across other various land-cover types (gaps and canopy edges). We examined the model’s performance in forested areas using three forest canopy quantification metrics and found that augmented models can better identify snow in canopy edges and open areas but still underpredict snow cover under forest canopies. While the new features improve model performance over band-only options, the models still have challenges identifying the snow under trees in dense forests, with performance varying as a function of the geographic area. The improved high-resolution snow maps in forested environments can support studies involving climate change effects on mountain ecosystems and evaluations of hydrological impacts in snow-dominated river basins.more » « less