skip to main content


Title: High-Resolution Snow-Covered Area Mapping in Forested Mountain Ecosystems Using PlanetScope Imagery
Improving high-resolution (meter-scale) mapping of snow-covered areas in complex and forested terrains is critical to understanding the responses of species and water systems to climate change. Commercial high-resolution imagery from Planet Labs, Inc. (Planet, San Francisco, CA, USA) can be used in environmental science, as it has both high spatial (0.7–3.0 m) and temporal (1–2 day) resolution. Deriving snow-covered areas from Planet imagery using traditional radiometric techniques have limitations due to the lack of a shortwave infrared band that is needed to fully exploit the difference in reflectance to discriminate between snow and clouds. However, recent work demonstrated that snow cover area (SCA) can be successfully mapped using only the PlanetScope 4-band (Red, Green, Blue and NIR) reflectance products and a machine learning (ML) approach based on convolutional neural networks (CNN). To evaluate how additional features improve the existing model performance, we: (1) build on previous work to augment a CNN model with additional input data including vegetation metrics (Normalized Difference Vegetation Index) and DEM-derived metrics (elevation, slope and aspect) to improve SCA mapping in forested and open terrain, (2) evaluate the model performance at two geographically diverse sites (Gunnison, Colorado, USA and Engadin, Switzerland), and (3) evaluate the model performance over different land-cover types. The best augmented model used the Normalized Difference Vegetation Index (NDVI) along with visible (red, green, and blue) and NIR bands, with an F-score of 0.89 (Gunnison) and 0.93 (Engadin) and was found to be 4% and 2% better than when using canopy height- and terrain-derived measures at Gunnison, respectively. The NDVI-based model improves not only upon the original band-only model’s ability to detect snow in forests, but also across other various land-cover types (gaps and canopy edges). We examined the model’s performance in forested areas using three forest canopy quantification metrics and found that augmented models can better identify snow in canopy edges and open areas but still underpredict snow cover under forest canopies. While the new features improve model performance over band-only options, the models still have challenges identifying the snow under trees in dense forests, with performance varying as a function of the geographic area. The improved high-resolution snow maps in forested environments can support studies involving climate change effects on mountain ecosystems and evaluations of hydrological impacts in snow-dominated river basins.  more » « less
Award ID(s):
1947875 2117834
NSF-PAR ID:
10406223
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Remote Sensing
Volume:
14
Issue:
14
ISSN:
2072-4292
Page Range / eLocation ID:
3409
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mountain snowpack provides critical water resources for forest and meadow ecosystems that are experiencing rapid change due to global warming. An accurate characterization of snowpack heterogeneity in these ecosystems requires snow cover observations at high spatial resolutions, yet most existing snow cover datasets have a coarse resolution. To advance our observation capabilities of snow cover in meadows and forests, we developed a machine learning model to generate snow-covered area (SCA) maps from PlanetScope imagery at about 3-m spatial resolution. The model achieves a median F1 score of 0.75 for 103 cloud-free images across four different sites in the Western United States and Switzerland. It is more accurate (F1 score = 0.82) when forest areas are excluded from the evaluation. We further tested the model performance across 7,741 mountain meadows at the two study sites in the Sierra Nevada, California. It achieved a median F1 score of 0.83, with higher accuracy for larger and simpler geometry meadows than for smaller and more complexly shaped meadows. While mapping SCA in regions close to or under forest canopy is still challenging, the model can accurately identify SCA for relatively large forest gaps (i.e., 15m < DCE < 27m), with a median F1 score of 0.87 across the four study sites, and shows promising accuracy for areas very close (>10m) to forest edges. Our study highlights the potential of high-resolution satellite imagery for mapping mountain snow cover in forested areas and meadows, with implications for advancing ecohydrological research in a world expecting significant changes in snow. 
    more » « less
  2. Abstract

    Forecasting rates of forest succession at landscape scales will aid global efforts to restore tree cover to millions of hectares of degraded land. While optical satellite remote sensing can detect regional land cover change, quantifying forest structural change is challenging. We developed a state‐space modeling framework that applies Landsat satellite data to estimate variability in rates of natural regeneration between sites in a tropical landscape. Our models work by disentangling measurement error in Landsat‐derived spectral reflectance from process error related to successional variability. We applied our modeling framework to rank rates of forest succession between 10 naturally regenerating sites in Southwestern Panama from about 2001 to 2015 and tested how different models for measurement error impacted forecast accuracy, ecological inference, and rankings of successional rates between sites. We achieved the greatest increase in forecasting accuracy by adding intra‐annual phenological variation to a model based on Landsat‐derived normalized difference vegetation index (NDVI). The best‐performing model accounted for inter‐ and intra‐annual noise in spectral reflectance and translated NDVI to canopy height via Landsat–lidar fusion. Modeling forest succession as a function of canopy height rather than NDVI also resulted in more realistic estimates of forest state during early succession, including greater confidence in rank order of successional rates between sites. These results establish the viability of state‐space models to quantify ecological dynamics from time series of space‐borne imagery. State‐space models also provide a statistical approach well‐suited to fusing high‐resolution data, such as airborne lidar, with lower‐resolution data that provides better temporal and spatial coverage, such as the Landsat satellite record. Monitoring forest succession using satellite imagery could play a key role in achieving global restoration targets, including identifying sites that will regain tree cover with minimal intervention.

     
    more » « less
  3. Abstract

    Located at northern latitudes and subject to large seasonal temperature fluctuations, boreal forests are sensitive to the changing climate, with evidence for both increasing and decreasing productivity, depending upon conditions. Optical remote sensing of vegetation indices based on spectral reflectance offers a means of monitoring vegetation photosynthetic activity and provides a powerful tool for observing how boreal forests respond to changing environmental conditions. Reflectance‐based remotely sensed optical signals at northern latitude or high‐altitude regions are readily confounded by snow coverage, hampering applications of satellite‐based vegetation indices in tracking vegetation productivity at large scales. Unraveling the effects of snow can be challenging from satellite data, particularly when validation data are lacking. In this study, we established an experimental system in Alberta, Canada including six boreal tree species, both evergreen and deciduous, to evaluate the confounding effects of snow on three vegetation indices: the normalized difference vegetation index (NDVI), the photochemical reflectance index (PRI), and the chlorophyll/carotenoid index (CCI), all used in tracking vegetation productivity for boreal forests. Our results revealed substantial impacts of snow on canopy reflectance and vegetation indices, expressed as increased albedo, decreased NDVI values and increased PRI and CCI values. These effects varied among species and functional groups (evergreen and deciduous) and different vegetation indices were affected differently, indicating contradictory, confounding effects of snow on these indices. In addition to snow effects, we evaluated the contribution of deciduous trees to vegetation indices in mixed stands of evergreen and deciduous species, which contribute to the observed relationship between greenness‐based indices and ecosystem productivity of many evergreen‐dominated forests that contain a deciduous component. Our results demonstrate confounding and interacting effects of snow and vegetation type on vegetation indices and illustrate the importance of explicitly considering snow effects in any global‐scale photosynthesis monitoring efforts using remotely sensed vegetation indices.

     
    more » « less
  4. Abstract

    Bidirectional reflectance distribution function (BRDF) effects are a persistent issue for the analysis of vegetation in airborne imaging spectroscopy data, especially when mosaicking results from adjacent flightlines. With the advent of large airborne imaging efforts from NASA and the U.S. National Ecological Observatory Network (NEON), there is increasing need for methods that are flexible and automatable across images with diverse land cover. Flexible bidirectional reflectance distribution function (FlexBRDF) is built upon the widely used kernel method, with additional features including stratified random sampling across flightline groups, dynamic land cover stratification by normalized difference vegetation index (NDVI), interpolation of correction coefficients across NDVI bins, and the use of a reference solar zenith angle. We demonstrate FlexBRDF using nine long (150–400 km) airborne visible/infrared imaging spectrometer (AVIRIS)‐Classic flightlines collected on 22 May 2013 over Southern California, where diverse land cover and a wide range of solar illumination yield significant BRDF effects. We further test the approach on additional AVIRIS‐Classic data from California, AVIRIS‐Next Generation data from the Arctic and India, and NEON imagery from Wisconsin. Comparison of overlapping areas of flightlines show that models built from multiple flightlines performed better than those built for single images (root mean square error improved up to 2.3% and mean absolute deviation 2.5%). Standardization to a common solar zenith angle among a flightline group improved performance, and interpolation across bins minimized between‐bin boundaries. While BRDF corrections for individual sites suffice for local studies, FlexBRDF is an open source option that is compatible with bulk processing of large airborne data sets covering diverse land cover needed for calibration/validation of forthcoming spaceborne imaging spectroscopy missions.

     
    more » « less
  5. null (Ed.)
    Mapping invasive vegetation species in arid regions is a critical task for managing water resources and understanding threats to ecosystem services. Traditional remote sensing platforms, such as Landsat and MODIS, are ill-suited for distinguishing native and non-native vegetation species in arid regions due to their large pixels compared to plant sizes. Unmanned aircraft systems, or UAS, offer the potential to capture the high spatial resolution imagery needed to differentiate species. However, in order to extract the most benefits from these platforms, there is a need to develop more efficient and effective workflows. This paper presents an integrated spectral–structural workflow for classifying invasive vegetation species in the Lower Salt River region of Arizona, which has been the site of fires and flooding, leading to a proliferation of invasive vegetation species. Visible (RGB) and multispectral images were captured and processed following a typical structure from motion workflow, and the derived datasets were used as inputs in two machine learning classifications—one incorporating only spectral information and one utilizing both spectral data and structural layers (e.g., digital terrain model (DTM) and canopy height model (CHM)). Results show that including structural layers in the classification improved overall accuracy from 80% to 93% compared to the spectral-only model. The most important features for classification were the CHM and DTM, with the blue band and two spectral indices (normalized difference water index (NDWI) and normalized difference salinity index (NDSI)) contributing important spectral information to both models. 
    more » « less