Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Rational design of chiral two‐dimensional hybrid organic–inorganic perovskites is crucial to achieve chiroptoelecronic, spintronic, and ferroelectric applications. Here, an efficient way to manipulate the chiroptoelectronic activity of 2D lead iodide perovskites is reported by forming mixed chiral (R‐ or S‐methylbenzylammonium (R‐MBA+or S‐MBA+)) and achiral (n‐butylammonium (nBA+)) cations in the organic layer. The strongest and flipped circular dichroism signals are observed in (R/S‐MBA0.5nBA0.5)2PbI4films compared to (R/S‐MBA)2PbI4. Moreover, the (R/S‐MBA0.5nBA0.5)2PbI4films exhibit pseudo‐symmetric, unchanged circularly polarized photoluminescence peak as temperature increases. First‐principles calculations reveal that mixed chiral–achiral cations enhance the asymmetric hydrogen‐bonding interaction between the organic and inorganic layers, causing more structural distortion, thus, larger spin‐polarized band‐splitting than pure chiral cations. Temperature‐dependent powder X‐ray diffraction and pair distribution function structure studies show the compressed intralayer lattice with enlarged interlayer spacing and increased local ordering. Overall, this work demonstrates a new method to tune chiral and chiroptoelectronic properties and reveals their atomic scale structural origins.more » « less
-
Free, publicly-accessible full text available January 1, 2026
-
Allosteric regulation is common in protein–protein interactions and is thus promising in drug design. Previous experimental and simulation work supported the presence of allosteric regulation in the SARS-CoV-2 spike protein. Here the route of allosteric regulation in SARS-CoV-2 spike protein is examined by all-atom explicit solvent molecular dynamics simulations, contrastive machine learning, and the Ohm approach. It was found that peptide binding to the polybasic cleavage sites, especially the one at the first subunit of the trimeric spike protein, activates the fluctuation of the spike protein's backbone, which eventually propagates to the receptor-binding domain on the third subunit that binds to ACE2. Remarkably, the allosteric regulation routes starting from the polybasic cleavage sites share a high fraction (39–67%) of the critical amino acids with the routes starting from the nitrogen-terminal domains, suggesting the presence of an allosteric regulation network in the spike protein. Our study paves the way for the rational design of allosteric antibody inhibitors.more » « less
-
A comprehensive understanding of the interfacial behaviors of biomolecules holds great significance in the development of biomaterials and biosensing technologies. In this work, we used discontinuous molecular dynamics (DMD) simulations and graphic contrastive learning analysis to study the adsorption of ubiquitin protein on a graphene surface. Our high-throughput DMD simulations can explore the whole protein adsorption process including the protein structural evolution with sufficient accuracy. Contrastive learning was employed to train a protein contact map feature extractor aiming at generating contact map feature vectors. Subsequently, these features were grouped using the k-means clustering algorithm to identify the protein structural transition stages throughout the adsorption process. The machine learning analysis can illustrate the dynamics of protein structural changes, including the pathway and the rate-limiting step. Our study indicated that the protein–graphene surface hydrophobic interactions and the π–π stacking were crucial to the seven-stage adsorption process. Upon adsorption, the secondary structure and tertiary structure of ubiquitin disintegrated. The unfolding stages obtained by contrastive learning-based algorithm were not only consistent with the detailed analyses of protein structures but also provided more hidden information about the transition states and pathway of protein adsorption process and structural dynamics. Our combination of efficient DMD simulations and machine learning analysis could be a valuable approach to studying the interfacial behaviors of biomolecules.more » « less
-
Computing landscape is evolving rapidly. Exascale computers have arrived, which can perform 10^18 mathematical operations per second. At the same time, quantum supremacy has been demonstrated, where quantum computers have outperformed these fastest supercomputers for certain problems. Meanwhile, artificial intelligence (AI) is transforming every aspect of science and engineering. A highly anticipated application of the emerging nexus of exascale computing, quantum computing and AI is computational design of new materials with desired functionalities, which has been the elusive goal of the federal materials genome initiative. The rapid change in computing landscape resulting from these developments has not been matched by pedagogical developments needed to train the next generation of materials engineering cyberworkforce. This gap in curricula across colleges and universities offers a unique opportunity to create educational tools, enabling a decentralized training of cyberworkforce. To achieve this, we have developed training modules for a new generation of quantum materials simulator, named AIQ-XMaS (AI and quantum-computing enabled exascale materials simulator), which integrates exascalable quantum, reactive and neural-network molecular dynamics simulations with unique AI and quantum-computing capabilities to study a wide range of materials and devices of high societal impact such as optoelectronics and health. As a singleentry access point to these training modules, we have also built a CyberMAGICS (cyber training on materials genome innovation for computational software) portal, which includes step-by-step instructions in Jupyter notebooks and associated tutorials, while providing online cloud service for those who do not have access to adequate computing platform. The modules are incorporated into our open-source AIQ-XMaS software suite as tutorial examples and are piloted in classroom and workshop settings to directly train many users at the University of Southern California (USC) and Howard University—one of the largest historically black colleges and universities (HBCUs), with a strong focus on underrepresented groups. In this paper, we summarize these educational developments, including findings from the first CyberMAGICS Workshop for Underrepresented Groups, along with an introduction to the AIQ-XMaS software suite. Our training modules also include a new generation of open programming languages for exascale computing (e.g., OpenMP target) and quantum computing (e.g., Qiskit) used in our scalable simulation and AI engines that underlie AIQ-XMaS. Our training modules essentially support unique dual-degree opportunities at USC in the emerging exa-quantum-AI era: Ph.D. in science or engineering, concurrently with MS in computer science specialized in high-performance computing and simulations, MS in quantum information science or MS in materials engineering with machine learning. The developed modular cyber-training pedagogy is applicable to broad engineering education at large.more » « less
An official website of the United States government

Full Text Available