- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0004000000000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Wang, Zichao (3)
-
Baraniuk, Richard G. (2)
-
Lan, Andrew (2)
-
Lan, Andrew S. (2)
-
Zhang, Mengxue (2)
-
Baral, Sami (1)
-
Baraniuk, Richard (1)
-
Choffin, Benoit (1)
-
Fernandez, Nigel (1)
-
Ghosh, Aritra (1)
-
Heffernan, Neil (1)
-
Liu, Naiming (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Zhang, Mengxue; Baral, Sami; Heffernan, Neil; Lan, Andrew (, International Conference on Educational Data Mining)Automatic short answer grading is an important research di- rection in the exploration of how to use artificial intelligence (AI)-based tools to improve education. Current state-of-the- art approaches use neural language models to create vector- ized representations of students responses, followed by clas- sifers to predict the score. However, these approaches have several key limitations, including i) they use pre-trained lan- guage models that are not well-adapted to educational sub- ject domains and/or student-generated text and ii) they al- most always train one model per question, ignoring the link- age across question and result in a significant model storage problem due to the size of advanced language models. In this paper, we study the problem of automatic short answer grad- ing for students’ responses to math questions and propose a novel framework for this task. First, we use MathBERT, a variant of the popular language model BERT adapted to mathematical content, as our base model and fine-tune it on the downstream task of student response grading. Sec- ond, we use an in-context learning approach that provides scoring examples as input to the language model to provide additional context information and promote generalization to previously unseen questions. We evaluate our framework on a real-world dataset of student responses to open-ended math questions and show that our framework (often signif- icantly) outperform existing approaches, especially for new questions that are not seen during training.more » « less
-
Wang, Zichao; Zhang, Mengxue; Baraniuk, Richard G.; Lan, Andrew S. (, 2021 IEEE International Conference on Big Data (Big Data))
-
Wang, Zichao; Lan, Andrew; Baraniuk, Richard (, 2021 Conference on Empirical Methods in Natural Language Processing)
An official website of the United States government

Full Text Available