skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2118945

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This study uses high‐energy X‐ray diffraction microscopy of SrTiO3to identify correlations between grain boundary (GB) area changes and the motion direction of neighboring GBs to investigate interfacial energy minimization mechanisms during grain growth. The local GB area changes were measured near triple lines (TLs) to isolate the effects of neighboring GBs. These area changes were then correlated to the migration direction and curvature of the neighboring GBs present at the TL, providing an alternative metric associated with lateral expansion for describing GB migration. Additionally, this study extracted GB dihedral angles, which reflect the relative GB energy, to test whether low energy GBs replace high energy GBs (i.e., GB replacement mechanism) and, thus, can be used to predict a GB's migration direction. The majority of GBs did not exhibit local area changes reflective of the GB replacement mechanism, and the dihedral angles were not reliable indicators of GB motion. However, the expansion and shrinkage of GBs moving away from their center of curvature was more often consistent with the grain boundary replacement mechanism. These results suggest that growth for certain GB configurations is governed by relative energy differences while others are governed by curvature. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Abstract This study investigates computationally the impact of particle size disparity and cohesion on force chain formation in granular media. The granular media considered in this study are bi-disperse systems under uniaxial compression, consisting of spherical, frictionless particles that interact through a modified Hookean model. Force chains in granular media are characterized as networks of particles that meet specific criteria for particle stress and inter-particle forces. The computational setup decouples the effects of particle packing on force chain formations, ensuring an independent assessment of particle size distribution and cohesion on force chain formation. The decoupling is achieved by characterizing particle packing through the radial density function, which enables the identification of systems with both regular and irregular packing. The fraction of particles in the force chains network is used to quantify the presence of the force chains. The findings show that particle size disparity promotes force chain formation in granular media with nearly-regular packing (i.e., an almost-ordered system). However, as particle size disparities grow, it promotes irregular packing (i.e., a disordered systems), leading to fewer force chains carrying larger loads than in ordered systems. Further, it is observed that the increased cohesion in granular systems leads to fewer force chains irrespective of particle size or packing. 
    more » « less
    Free, publicly-accessible full text available February 25, 2026
  3. Abstract SPPARKS is an open-source parallel simulation code for developing and running various kinds of on-lattice Monte Carlo models at the atomic or meso scales. It can be used to study the properties of solid-state materials as well as model their dynamic evolution during processing. The modular nature of the code allows new models and diagnostic computations to be added without modification to its core functionality, including its parallel algorithms. A variety of models for microstructural evolution (grain growth), solid-state diffusion, thin film deposition, and additive manufacturing (AM) processes are included in the code. SPPARKS can also be used to implement grid-based algorithms such as phase field or cellular automata models, to run either in tandem with a Monte Carlo method or independently. For very large systems such as AM applications, the Stitch I/O library is included, which enables only a small portion of a huge system to be resident in memory. In this paper we describe SPPARKS and its parallel algorithms and performance, explain how new Monte Carlo models can be added, and highlight a variety of applications which have been developed within the code. 
    more » « less
  4. Free, publicly-accessible full text available September 1, 2026
  5. Free, publicly-accessible full text available August 1, 2026
  6. Free, publicly-accessible full text available July 1, 2026
  7. Grain growth in polycrystals is traditionally considered a capillarity-driven process, where grain boundaries (GBs) migrate toward their centers of curvature (i.e., mean curvature flow) with a velocity proportional to the local curvature (including extensions to account for anisotropic GB energy and mobility). Experimental and simulation evidence shows that this simplistic view is untrue. We demonstrate that the failure of the classical mean curvature flow description of grain growth mainly originates from the shear deformation naturally coupled with GB motion (i.e., shear coupling). Our findings are built on large-scale microstructure evolution simulations incorporating the fundamental (crystallography-respecting) microscopic mechanism of GB migration. The nature of the deviations from curvature flow revealed in our simulations is consistent with observations in recent experimental studies on different materials. This work also demonstrates how to incorporate the mechanical effects that are essential to the accurate prediction of microstructure evolution. 
    more » « less
    Free, publicly-accessible full text available June 17, 2026
  8. Free, publicly-accessible full text available June 1, 2026
  9. Free, publicly-accessible full text available February 1, 2026
  10. Free, publicly-accessible full text available February 1, 2026