skip to main content


Search for: All records

Award ID contains: 2119308

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Emerging machine-learned models have enabled efficient and accurate prediction of compound formation energy, with the most prevalent models relying on graph structures for representing crystalline materials. Here, we introduce an alternative approach based on sparse voxel images of crystals. By developing a sophisticated network architecture, we showcase the ability to learn the underlying features of structural and chemical arrangements in inorganic compounds from visual image representations, subsequently correlating these features with the compounds’ formation energy. Our model achieves accurate formation energy prediction by utilizing skip connections in a deep convolutional network and incorporating augmentation of rotated crystal samples during training, performing on par with state-of-the-art methods. By adopting visual images as an alternative representation for crystal compounds and harnessing the capabilities of deep convolutional networks, this study extends the frontier of machine learning for accelerated materials discovery and optimization. In a comprehensive evaluation, we analyse the predicted convex hulls for 3115 binary systems and introduce error metrics beyond formation energy error. This evaluation offers valuable insights into the impact of formation energy error on the performance of the predicted convex hulls.

     
    more » « less
  2. Free, publicly-accessible full text available October 1, 2024
  3. We report the P-V-T equation of state measurements of B4C to 50GPa and approximately 2500K in laser-heated diamond anvil cells. We obtain an ambient temperature, third-order Birch–Murnaghan fit to the P-V data that yields a bulk modulus K0 of 221(2) GPa and derivative, (dK/dP)0 of 3.3(1). These were used in fits with both a Mie–Grüneisen– Debye model and a temperature-dependent, Birch– Murnaghan equation of state that includes thermal pressure estimated by thermal expansion (α) and a temperature-dependent bulk modulus (dK0/dT). The ambient pressure thermal expansion coefficient (α0+α1T), Grüneisen γ (V)=γ 0(V/V0)q and volumedependent Debye temperature, were used as input parameters for these fits and found to be sufficient to describe the data in the whole P-T range of this study. 
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  4. Abstract High-pressure electrical resistivity measurements reveal that the mechanical deformation of ultra-hard WB 2 during compression induces superconductivity above 50 GPa with a maximum superconducting critical temperature, T c of 17 K at 91 GPa. Upon further compression up to 187 GPa, the T c gradually decreases. Theoretical calculations show that electron-phonon mediated superconductivity originates from the formation of metastable stacking faults and twin boundaries that exhibit a local structure resembling MgB 2 (hP3, space group 191, prototype AlB 2 ). Synchrotron x-ray diffraction measurements up to 145 GPa show that the ambient pressure hP12 structure (space group 194, prototype WB 2 ) continues to persist to this pressure, consistent with the formation of the planar defects above 50 GPa. The abrupt appearance of superconductivity under pressure does not coincide with a structural transition but instead with the formation and percolation of mechanically-induced stacking faults and twin boundaries. The results identify an alternate route for designing superconducting materials. 
    more » « less
  5. Abstract Predicting the synthesizability of hypothetical crystals is challenging because of the wide range of parameters that govern materials synthesis. Yet, exploring the exponentially large space of novel crystals for any future application demands an accurate predictive capability for synthesis likelihood to avoid a haphazard trial-and-error. Typically, benchmarks of synthesizability are defined based on the energy of crystal structures. Here, we take an alternative approach to select features of synthesizability from the latent information embedded in crystalline materials. We represent the atomic structure of crystalline materials by three-dimensional pixel-wise images that are color-coded by their chemical attributes. The image representation of crystals enables the use of a convolutional encoder to learn the features of synthesizability hidden in structural and chemical arrangements of crystalline materials. Based on the presented model, we can accurately classify materials into synthesizable crystals versus crystal anomalies across a broad range of crystal structure types and chemical compositions. We illustrate the usefulness of the model by predicting the synthesizability of hypothetical crystals for battery electrode and thermoelectric applications. 
    more » « less