skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2119485

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Chang, Fu-Kuo; Guemes, Alfredo (Ed.)
    This paper addresses the problem of monitoring structures with potential emergent damage through adaptive sensing provided by teams of mobile robots. Advantages of mobile robot teams for structural health monitoring include: 1. Multiple views of a given structure, 2. Adaptive movements that focus attention in response to observed conditions,3. Heterogeneous sensing and movement, and 4. Federated health monitoring and prognosis assessment through networked sharing and processing of information. Towards this end three cases of the use of mobile robot teams will be presented: 1. Heterogeneous robot teams for home and small building maintenance – Identifying, diagnosing and mitigating damage to homes and small buildings is a vexing set of problems for the owners. As an aid small controlled bristlebots and quadruped robot dogs (QRDs) carry sensors throughout a small building, assess conditions, provide prognoses and networked links to repair options; 2. Culverts are primary components of stormwater and flood prevention infrastructure. Inspecting small culverts is difficult for humans and large culverts are accessible but dangerous due to issues of confined spaces. Low-cost mobile robots have emerged as a competitive inspection option for accessible culverts with straight or short runs that permit wireless telemetry. Longer culverts and those with bends, branches and drop inlets pose challenges to the telemetry. Teams of robots extend the range of inspection through multi-hop video and control telemetry; 3. Ground penetrating radar (GPR) is a method of sensing subsurface infrastructure conditions with high-frequency electromagnetic waves. Conventional GPRs operate in a suboptimal monostatic or bistatic mode, are tedious to operate and have limitations in sensing congested utility subsurface conditions. Coordinated multistatic ground penetrating radar operated with mobile robot teams alleviates some of these concerns and provide better subsurface assessments with automated methods that focus attention on subsurface features of interest. Results from laboratory and field tests of these robot teams, as well as organizing principles of control and automated information processing are presented. 
    more » « less
    Free, publicly-accessible full text available September 9, 2026
  2. Mobile robots can access regions and collect data in structural locations not easily reached by humans. This includes confined spaces, such as inside walls, and underground pipes; and remote spaces, such as the underside of bridge decks. Robot access provides the opportunity to sense in these difficult to access spaces with robot mounted sensors, i.e. cameras and lidars, and with the robot placing and servicing standalone sensors. Teams of robots, sensors and AR-equipped humans have the potential to provide rapid and more comprehensive structural assessments. This paper presents results of studies using small robots to explore and collect structural condition data from remote and confined spaces including in walls, culverts, and bridge deck undersides. The presentation also covers system and network architecture, methods for automating data processing with localized and edge-based processors, the use of augmented reality (AR) human interfaces and discusses key technical challenges and possible solutions. 
    more » « less
  3. Recent advances in precision manufacturing technology and a thorough understanding of the properties of piezoelectric materials have made it possible for researchers to develop innovative microrobotic systems, which draw more attention to the challenges of utilizing microrobots in areas that are inaccessible to ordinary robots. This review paper provides an overview of the recent advances in the application of piezoelectric materials in microrobots. The challenges of microrobots in the direction of autonomy are categorized into four sections: mechanisms, power, sensing, and control. In each section, innovative research ideas are presented to inspire researchers in their prospective microrobot designs according to specific applications. Novel mechanisms for the mobility of piezoelectric microrobots are reviewed and described. Additionally, as the piezoelectric micro-actuators require high-voltage electronics and onboard power supplies, we review ways of energy harvesting technology and lightweight micro-sensing mechanisms that contain piezoelectric devices to provide feedback, facilitating the use of control strategies to achieve the autonomous untethered movement of microrobots. 
    more » « less