Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Inspired by Nature, we present a polypeptide-based organic redox-active material constructed from renewable feedstocks, L-glutamic acid (an amino acid) and riboflavin (vitamin B2), to address challenges with start-to-end-of-life management in energy storage systems (ESSs). The amino acid was utilized to establish a degradable polymer backbone, along which many copies of riboflavin were incorporated to serve as the redox-active pendant groups that enabled energy storage. The overall synthesis involved the ring-opening polymerization (ROP) of anl-glutamic acid-derivedN-carboxyanhydride (NCA) monomer, followed by side chain activation with azides and, finally, click coupling to achieve installation of alkyne-functionalized riboflavin moieties. The steric bulkiness and rich chemical functionality of riboflavin resulted in synthetic complexities that required reaction optimization to achieve the desired polymer structure. Electrochemical characterization of the resultant riboflavin polypeptide, in organic electrolyte, showed quasireversible redox activity with a half-wave potential (E1/2) ofca.ā1.10 Vvs.ferrocene/ferrocenium (Fc/Fc+). Cell viability assays revealed biocompatibility, as indicated by negligible cytotoxicity for fibroblast cells. The polypeptide design, consisting of labile amide backbone linkages and side-chain ester functionalities that tethered the riboflavin units to the backbone, enabled hydrolytic degradation to recover building blocks for future upcycling or recycling. This bioinspired strategy advances the development of degradable redox-active polymers and promotes sustainable materials design for circular energy storage technologies.more » « lessFree, publicly-accessible full text available July 1, 2026
-
The role of the linker (the group connecting viologen moieties to peptide-based backbones) in electron transfer was studied. The backbone dictated the mechanism of electron transfer, whereas the linker length altered the rate of electron transfer.more » « lessFree, publicly-accessible full text available November 26, 2025
-
Redox-active polymers serving as the active materials in solid-state electrodes offer a promising path toward realizing all-organic batteries. While both cathodic and anodic redox-active polymers are needed, the diversity of the available anodic materials is limited. Here, we predict solid-state structural, ionic, and electronic properties of anodic, phthalimide-containing polymers using a multiscale approach that combines atomistic molecular dynamics, electronic structure calculations, and machine learning surrogate models. Importantly, by combining information from each of these scales, we are able to bridge the gap between bottom-up molecular characteristics and macroscopic properties such as apparent diffusion coefficients of electron transport (Dapp). We investigate the impact of different polymer backbones and of two critical factors during battery operation: state of charge and polymer swelling. Our findings reveal that the state of charge significantly influences solid-state packing and the thermophysical properties of the polymers, which, in turn, affect ionic and electronic transport. A combination of molecular-level properties (such as the reorganization energy) and condensed-phase properties (such as effective electron hopping distances) determine the predicted ranking of electron transport capabilities of the polymers. We predict Dapp for the phthalimide-based polymers and for a reference nitroxide radical-based polymer, finding a 3 orders of magnitude increase in Dapp (ā10ā6 cm2 sā1) with respect to the reference. This study underscores the promise of phthalimide-containing polymers as highly capable redox-active polymers for anodic materials in all-organic batteries, due to their exceptional predicted electron transport capabilities.more » « less
An official website of the United States government

Full Text Available