skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 14, 2026

Title: Redox-active polymer-grafted particles as redox mediators for enhanced charge transport in solution-state electrochemical systems
Efficient charge transport pathways in solutions of redox-active polymers are essential for advancing next-generation energy storage systems.  more » « less
Award ID(s):
2119672 2104179
PAR ID:
10639501
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
RSC
Date Published:
Journal Name:
Chemical Science
Volume:
16
Issue:
19
ISSN:
2041-6520
Page Range / eLocation ID:
8357 to 8368
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Chemical redox reactions between redox shuttles and lithium-ion battery particles have applications in electrochemical systems including redox-mediated flow batteries, photo-assisted lithium-ion batteries, and lithium-ion battery overcharge protection. These previous studies, combined with interest in chemical redox of battery materials in general, has resulted in previous reports of the chemical oxidation and/or reduction of solid lithium-ion materials. However, in many of these reports, a single redox shuttle is the focus and/or the experimental conditions are relatively limited. Herein, a study of chemical redox for a series of redox shuttles reacted with a lithium-ion battery cathode material will be reported. Both oxidation and reduction of the solid material with redox shuttles as a function of time will be probed using ferrocene derivatives with different half-wave potentials. The progression of the chemical redox was tracked by using electrochemical analysis of the redox shuttles in a custom electrochemical cell, and rate constants for chemical redox were extracted from using two different models. This study provides evidence that redox shuttle-particle interactions play a role in the overall reaction rate, and more broadly support that this experimental method dependent on electrochemical analysis can be applied for comparison of redox shuttles reacting with solid electroactive materials. 
    more » « less
  2. Abstract Central metabolism is organised through high‐flux, Nicotinamide Adenine Dinucleotide (NAD+/NADH) and NADP+/NADPH systems operating at near equilibrium. As oxygen is indispensable for aerobic organisms, these systems are also linked to the levels of reactive oxygen species, such as H2O2, and through H2O2to the regulation of macromolecular structures and activities, via kinetically controlled sulphur switches in the redox proteome. Dynamic changes in H2O2production, scavenging and transport, associated with development, growth and responses to the environment are, therefore, linked to the redox state of the cell and regulate cellular function. These basic principles form the ‘redox code’ of cells and were first defined by D. P. Jones and H. Sies in 2015. Here, we apply these principles to plants in which recent studies have shown that they can also explain cell‐to‐cell and even plant‐to‐plant signalling processes. The redox code is, therefore, an integral part of biological systems and can be used to explain multiple processes in plants at the subcellular, cellular, tissue, whole organism and perhaps even community and ecosystem levels. As the environmental conditions on our planet are worsening due to global warming, climate change and increased pollution levels, new studies are needed applying the redox code of plants to these changes. 
    more » « less
  3. The D3TaLES database and data infrastructure aim to offer readily accessible and uniform data of varying types for redox-active organic molecules targeting non-aqueous redox flow batteries. 
    more » « less
  4. Abstract Redox flow batteries (RFB) have emerged as one of the most promising technologies for large‐scale energy storage owing to their high safety, long operation life, and decoupled design of energy and power. However, the problems of high cost and low energy density restrict their further development. The cost merit and tunable structure of organic redox‐active materials have prompted the development of organic RFBs. The solubility of the redoxmer is recognized as a parameter that contributes directly to the energy density. Herein, we focus on strategies for enhancing the solubility of organic redoxmers in aqueous RFBs. The effects of incorporating different hydrophilic functional groups on the solubility of the redoxmer and its effect on the performance of other batteries are systematically and exhaustively described. Other strategies, such as molecular symmetry tuning and employing more soluble counterions and cosolvents, are also summarized. The development trends and prospects for organic RFBs are also discussed. 
    more » « less
  5. Abstract Pathway complexity in supramolecular assemblies presents a unique opportunity for a single, relatively simple system to exhibit a wide range of properties allowing for multifunctionality. In this study, we report redox‐enabled pathway complexity in amino acid‐functionalized perylene diimides (PDIs) and its consequence for the macroscopic hydrogel network. We show that chemical reduction and subsequent oxidation enable a kinetically trapped state which transforms into different network morphologies in response to heat and time. Our finding that pathway complexity in supramolecular systems can alter bulk material properties suggests the potential for future development of dynamic materials that achieve multiple macroscopic functions with a single building block. 
    more » « less