skip to main content

Search for: All records

Award ID contains: 2120717

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In response to global warming, ozone is predicted to increase aloft due to stratospheric cooling but decrease in the tropical lower stratosphere. The ozone reductions have been primarily attributed to a strengthening Brewer‐Dobson circulation, which upwells ozone‐poor air. Yet, this paper finds that strengthening upwelling only explains part of the reduction. The reduction is also driven by tropospheric expansion under global warming, which erodes the ozone layer from below, the low ozone anomalies from which are advected upwards. Strengthening upwelling and tropospheric expansion are correlated under global warming, making it challenging to disentangle their relative contributions. Therefore, chemistry‐climate model output is used to validate an idealized model of ozone photochemistry and transport with a tropopause lower boundary condition. In our idealized decomposition, strengthening upwelling and tropospheric expansion both contribute at leading order to reducing tropical ozone. Tropospheric expansion drives bottom‐heavy reductions in ozone, which decay in magnitude into the mid‐stratosphere.

    more » « less