Abstract Orbital precession has been linked to glacial cycles and the atmospheric carbon dioxide (CO2) concentration, yet the direct impact of precession on the carbon cycle is not well understood. We analyze output from an Earth system model configured under different orbital parameters to isolate the impact of precession on air‐sea CO2flux in the Southern Ocean—a component of the global carbon cycle that is thought to play a key role on past atmospheric CO2variations. Here, we demonstrate that periods of high precession are coincident with anomalous CO2outgassing from the Southern Ocean. Under high precession, we find a poleward shift in the southern westerly winds, enhanced Southern Ocean meridional overturning, and an increase in the surface ocean partial pressure of CO2along the core of the Antarctic Circumpolar Current. These results suggest that orbital precession may have played an important role in driving changes in atmospheric CO2. 
                        more » 
                        « less   
                    
                            
                            Deep Nitrogen Fluxes and Sources Constrained by Arc Lava Phenocrysts
                        
                    
    
            Abstract Nitrogen (N) dominates Earth's atmosphere (78% N2) but occurs in trace abundances in silicate minerals, making it a sensitive tracer of recycled surface materials into the mantle. The mechanisms controlling N transfer between terrestrial reservoirs remain uncertain because low N abundances in mineral‐hosted fluid inclusions (FIs) are difficult to measure. Using new techniques, we analyzed N and He isotope compositions and abundances in olivine‐ and pyroxene‐hosted FIs from arc volcanoes in Southern Chile, Cascadia, Central America, and the Southern Marianas. These measurements enable an estimate of the global flux of N outgassing from arcs (4.0 × 1010 mol/yr). This suggests that Earth is currently in a state of net N ingassing, with roughly half of subducted N returned to the mantle. Additionally, the N outgassing flux of individual arcs correlates with the thickness of subducting pelagic sediment, suggesting that N cycling in the modern solid Earth is largely controlled by sediment subduction. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10559845
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 51
- Issue:
- 24
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The concentration of carbon in primary mid‐ocean ridge basalts (MORBs), and the associated fluxes of CO2outgassed at ocean ridges, is examined through new data obtained by secondary ion mass spectrometry (SIMS) on 753 globally distributed MORB glasses. MORB glasses are typically 80–90% degassed of CO2. We thus use the limited range in CO2/Ba (81.3 ± 23) and CO2/Rb (991 ± 129), derived from undegassed MORB and MORB melt inclusions, to estimate primary CO2concentrations for ridges that have Ba and/or Rb data. When combined with quality‐controlled volatile‐element data from the literature (n = 2,446), these data constrain a range of primary CO2abundances that vary from 104 ppm to 1.90 wt%. Segment‐scale data reveal a range in MORB magma flux varying by a factor of 440 (from 6.8 × 105to 3.0 × 108m3/year) and an integrated global MORB magma flux of 16.5 ± 1.6 km3/year. When combined with CO2/Ba and CO2/Rb‐derived primary magma CO2abundances, the calculated segment‐scale CO2fluxes vary by more than 3 orders of magnitude (3.3 × 107to 4.0 × 1010mol/year) and sum to an integrated global MORB CO2flux of × 1012mol/year. Variations in ridge CO2fluxes have a muted effect on global climate; however, because the vast majority of CO2degassed at ridges is dissolved into seawater and enters the marine bicarbonate cycle. MORB degassing would thus only contribute to long‐term variations in climate via degassing directly into the atmosphere in shallow‐water areas or where the ridge system is exposed above sea level.more » « less
- 
            These data correspond to the article “Deep Nitrogen Fluxes and Sources Constrained by Arc Lava Phenocrysts” by Hudak et al. submitted to Geophysical Research Letters. Table S1 includes N-He-Ar data for FIs in phenocrysts from mafic are lavas and tephras. Table S2 contains the corrected N2/3He data used for volcanic arc N flux calculations and the arc-averaged mean N arc flux. Table S3 summarizes previous literature estimates of N fluxes and the data used for those calculations. Table S4 provides the N concentrations, He concentrations, N isotope compositions of the mantle, sediments, and altered oceanic crust, as well as sediment thicknesses. Finally, Table S5 gives information about the sources of the mineral separates used for these analyses.more » « less
- 
            Abstract Volatiles from the solar nebula are known to be present in Earth's deep mantle. The core also may contain solar nebula‐derived volatiles, but in unknown amounts. Here we use calculations of volatile ingassing and degassing to estimate the abundance of primordial3He now in the core and track the rate of3He exchange between the core and mantle through Earth history. We apply an ingassing model that includes a silicate magma ocean and an iron‐rich proto‐core coupled to a nebular atmosphere of solar composition to calculate the amounts of3He acquired by the mantle and core during accretion and core formation. Using experimentally determined partitioning between core‐forming metals and silicate magma, we find that dissolution from the nebular atmosphere deposits one or more petagrams of3He into the proto‐core. Following accretion,3He exchange depends on the convective history of the coupled core‐mantle system. We combine determinations of the present‐day surface3He flux with estimates of the present‐day mantle3He abundance, mantle and core heat fluxes, and our ingassed3He abundances in a convective degassing model. According to this model, the mantle3He abundance is evolving toward a statistical steady state, in which surface losses are compensated by enrichments from the core.more » « less
- 
            Abstract The coma of comet C/2016 R2 (PanSTARRS) is one of the most chemically peculiar ever observed, in particular due to its extremely high CO/H2O and /H2O ratios, and unusual trace volatile abundances. However, the complex shape of its CO emission lines, as well as uncertainties in the coma structure and excitation, has lead to ambiguities in the total CO production rate. We performed high-resolution, spatially, spectrally, and temporally resolved CO observations using the James Clerk Maxwell Telescope and Submillimeter Array to elucidate the outgassing behavior of C/2016 R2. Results are analyzed using a new, time-dependent, three-dimensional radiative transfer code (SUBlimating gases in LIME; SUBLIME, based on the open-source version of the LIne Modeling Engine), incorporating for the first time, accurate state-to-state collisional rate coefficients for the CO–CO system. The total CO production rate was found to be in the range of (3.8 − 7.6) × 1028s−1between 2018 January 13 and February 1 (atrH= 2.8–2.9 au), with a mean value of (5.3 ± 0.6) × 1028s−1. The emission is concentrated in a near-sunward jet, with a half-opening angle of ∼62° and an outflow velocity of 0.51 ± 0.01 km s−1, compared to 0.25 ± 0.01 km s−1in the ambient (and nightside) coma. Evidence was also found for an extended source of CO emission, possibly due to icy grain sublimation around 1.2 × 105km from the nucleus. Based on the coma molecular abundances, we propose that the nucleus ices of C/2016 R2 can be divided into a rapidly sublimating apolar phase, rich in CO, CO2, N2, and CH3OH, and a predominantly frozen (or less abundant), polar phase containing more H2O, CH4, H2CO, and HCN.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
