skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2122054

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Rapid urbanization, climate change, and aging infrastructure pose significant challenges to achieving sustainability and resilience goals in urban building energy use. Although retrofitting offers a viable solution to mitigate building energy use, there has been limited analysis of its effects under various weather conditions associated with climate change in urban building energy use simulations. Moreover, certain parameters in energy simulations necessitate extensive auditing or survey work, which is often impractical. This research proposes a framework that integrates various datasets, including building footprints, Lidar data, property appraisals, and street view images, to conduct neighborhood-scale building energy use analysis using the Urban Modeling Interface (UMI), an Urban Building Energy Model (UBEM), in a coastal neighborhood in Galveston, Texas. Seven retrofit plans and three weather conditions are considered in the scenarios of building energy use. The results show that decreasing the U-value of building envelopes helps reduce energy use, while increasing the U-value leads to higher energy consumption in the Galveston neighborhood. This finding provides direction for coastal Texas cities, like Galveston, to update building standards and implement retrofit measures. 
    more » « less
  2. Abstract Digital Twins (DTs) are increasingly recognized for their potential to improve efficiency and decision-making in various domains of the built environment. Despite their promise, challenges like cost, complexity, interoperability, and data integration remain. This paper introduces a novel interactive visual analytics system that tackles these issues, using a case study of simulating class distribution and campus building capacity at a large public university. The system leverages enrollment data, converting it into a spatial-temporal format for interactive exploration and analysis of class distribution and resource utilization. Through case studies, we demonstrate the system's effectiveness, adaptability, and real-world applicability, highlighting its role in practical DT implementation for built environments. 
    more » « less