skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2122320

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Contrastive learning (CL), a self-supervised learning approach, can effectively learn visual representations from unlabeled data. Given the CL training data, generative models can be trained to generate synthetic data to supplement the real data. Using both synthetic and real data for CL training has the potential to improve the quality of learned representations. However, synthetic data usually has lower quality than real data, and using synthetic data may not improve CL compared with using real data. To tackle this problem, we propose a data generation framework with two methods to improve CL training by joint sample generation and contrastive learning. The first approach generates hard samples for the main model. The generator is jointly learned with the main model to dynamically customize hard samples based on the training state of the main model. Besides, a pair of data generators are proposed to generate similar but distinct samples as positive pairs. In joint learning, the hardness of a positive pair is progressively increased by decreasing their similarity. Experimental results on multiple datasets show superior accuracy and data efficiency of the proposed data generation methods applied to CL. For example, about 4.0%, 3.5%, and 2.6% accuracy improvements for linear classification are observed on ImageNet-100, CIFAR-100, and CIFAR-10, respectively. Besides, up to 2× data efficiency for linear classification and up to 5× data efficiency for transfer learning are achieved. 
    more » « less
  2. Conventionally, DNN models are trained once in the cloud and deployed in edge devices such as cars, robots, or unmanned aerial vehicles (UAVs) for real-time inference. However, there are many cases that require the models to adapt to new environments, domains, or users. In order to realize such domain adaption or personalization, the models on devices need to be continuously trained on the device. In this work, we design EF-Train, an efficient DNN training accelerator with a unified channel-level parallelism-based convolution kernel that can achieve end-to-end training on resource-limited low-power edge-level FPGAs. It is challenging to implement on-device training on resource-limited FPGAs due to the low efficiency caused by different memory access patterns among forward and backward propagation and weight update. Therefore, we developed a data reshaping approach with intra-tile continuous memory allocation and weight reuse. An analytical model is established to automatically schedule computation and memory resources to achieve high energy efficiency on edge FPGAs. The experimental results show that our design achieves 46.99 GFLOPS and 6.09 GFLOPS/W in terms of throughput and energy efficiency, respectively. 
    more » « less