skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2123540

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Dias, João Miguel (Ed.)
    The importance of coastal upwelling systems is widely recognized. However, several aspects of the current and future behaviors of these systems remain uncertain. Fluctuations in temperature because of anthropogenic climate change are hypothesized to affect upwelling-favorable winds and coastal upwelling is expected to intensify across all Eastern Boundary Upwelling Systems. To better understand how upwelling may change in the future, it is necessary to develop a more rigorous method of quantifying this phenomenon. In this paper, we use SST data and wind data in a novel method of detecting upwelling signals and quantifying metrics of upwelling intensity, duration, and frequency at four sites within the Benguela Upwelling System. We found that indicators of upwelling are uniformly detected across five SST products for each of the four sites and that the duration of those signals is longer in SST products with higher spatial resolutions. Moreover, the high-resolution SST products are significantly more likely to display upwelling signals at 25 km away from the coast when signals were also detected at the coast. Our findings promote the viability of using SST and wind time series data to detect upwelling signals within coastal upwelling systems. We highlight the importance of high-resolution data products to improve the reliability of such estimates. This study represents an important step towards the development of an objective method for describing the behavior of coastal upwelling systems. 
    more » « less
  2. Global increases in temperature are altering land-sea temperature gradients. Bakun (1990) hypothesized that changes within these gradients will directly affect atmospheric pressure cells associated with the development of winds and will consequently impact upwelling patterns within ecologically important Eastern Boundary Upwelling Systems (EBUS). In this study we used daily time series of NOAA Optimally Interpolated sea surface temperature (SST) and ERA 5 reanalysis wind products to calculate a series novel of metrics related to upwelling dynamics. We then use these to objectively describe upwelling signals in terms of their frequency, intensity and duration throughout the four EBUS during summer months over the last 37 years (1982–2019). We found that a decrease (increase) in SST is associated with an increase (decrease) in the number of upwelling “events,” a decrease (increase) in the intensity of upwelling, and an increase (decrease) in the cumulative intensity of upwelling, with differences between EBUS and regions within EBUS. The Humboldt Current is the only EBUS that shows a consistent response from north to south with a general intensification of upwelling. However, we could not provide clear evidence for associated changes in the wind dynamics hypothesized to drive the upwelling dynamics. 
    more » « less