skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2123768

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Dissolved inorganic carbon (DIC) and its stable carbon isotope (δ13C‐DIC) are valuable parameters for studying the aquatic carbon cycle and quantifying ocean anthropogenic carbon accumulation rates. However, the potential of this coupled pair is underexploited as only 15% or less of cruise samples have been analyzed forδ13C‐DIC because the traditional isotope analysis is labor‐intensive and restricted to onshore laboratories. Here, we improved the analytical precision and reported the protocol of an automated, efficient, and high‐precision method for ship‐based DIC andδ13C‐DIC analysis based on cavity ring‐down spectroscopy (CRDS). We also introduced a set of stable in‐house standards to ensure accurate and consistent DIC andδ13C‐DIC measurements, especially on prolonged cruises. With this method, we analyzed over 1600 discrete seawater samples over a 40‐d cruise along the North American eastern ocean margin in summer 2022, representing the first effort to collect a large dataset ofδ13C‐DIC onboard of any oceanographic expedition. We evaluated the method's uncertainty, which was 1.2 μmol kg−1for the DIC concentration and 0.03‰ for theδ13C‐DIC value (1σ). An interlaboratory comparison of onboard DIC concentration analysis revealed an average offset of 2.0 ± 3.8 μmol kg−1between CRDS and the coulometry‐based results. The cross‐validation ofδ13C‐DIC in the deep‐ocean data exhibited a mean difference of only −0.03‰ ± 0.07‰, emphasizing the consistency with historical data. Potential applications in aquatic biogeochemistry are discussed. 
    more » « less
  2. Abstract The South Atlantic Ocean is an important region for anthropogenic CO2(Canth) uptake and storage in the world ocean, yet is less studied. Here, after an extensive sensitivity test and method comparison, we applied an extended multiple linear regression method with six characteristic water masses to estimate Canthchange or increase (ΔCanth) between 1980s and 2010s in the South Atlantic Ocean using two meridional transects (A16S and A13.5) and one zonal transect (A10). Over a period of about 25 years, the basin‐wide ΔCanthwas 3.86 ± 0.14 Pg C decade−1. The two basins flanking the Mid‐Atlantic Ridge had different meridional patterns of ΔCanth, yielding an average depth‐integrated ΔCanthin the top 2000 m of 0.91 ± 0.25 mol m−2 yr−1along A16S on the west and 0.57 ± 0.22 mol m−2 yr−1along A13.5 on the east. The west‐east basin ΔCanthcontrasts were most prominent in the tropical region (0–20°S) in the Surface Water (SW), approximately from equator to 35°S in the Subantarctic Mode Water (Subantarctic Mode Water (SAMW)), and all latitudes in the Antarctic Intermediate Water (AAIW). Less ΔCanthin the eastern basin than the western basin was caused by weaker ventilation driven by SAMW and AAIW formation and subduction and stronger Antarctic Bottom Water (AABW) formation in the former than the latter. In addition to the spatial heterogeneity, Canthincrease rates accelerated from the 1990s to the 2000s, consistent with the overall increase in air‐sea CO2exchange in the South Atlantic Ocean. 
    more » « less
  3. The ocean has absorbed anthropogenic carbon dioxide (Canthro) from the atmosphere and played an important role in mitigating global warming. However, how much Canthrois accumulated in coastal oceans and where it comes from have rarely been addressed with observational data. Here, we use a high-quality carbonate dataset (1996–2018) in the U.S. East Coast to address these questions. Our work shows that the offshore slope waters have the highest Canthroaccumulation changes (ΔCanthro) consistent with water mass age and properties. From offshore to nearshore, ΔCanthrodecreases with salinity to near zero in the subsurface, indicating no net increase in the export of Canthrofrom estuaries and wetlands. Excesses over the conservative mixing baseline also reveal an uptake of Canthrofrom the atmosphere within the shelf. Our analysis suggests that the continental shelf exports most of its absorbed Canthrofrom the atmosphere to the open ocean and acts as an essential pathway for global ocean Canthrostorage and acidification. 
    more » « less
  4. The South Atlantic Ocean is an important region for anthropogenic CO2 (Canth) uptake and storage in the world ocean, yet is less studied. Here, after an extensive sensitivity test and method comparison, we applied an extended multiple linear regression (eMLR) method with six characteristic water masses to estimate Canth change or increase (ΔCanth) between 1980s and 2010s in the South Atlantic Ocean using two meridional transects (A16S and A13.5) and one zonal transect (A10). Over a period of about 25 years, the basin-wide ΔCanth was 3.86±0.14 Pg C decade-1. The two basins flanking the Mid-Atlantic Ridge had different meridional patterns of ΔCanth, yielding an average depth‐integrated ΔCanth in the top 2000 m of 0.91±0.25 mol m-2 yr-1 along A16S on the west and 0.57±0.22 mol m-2 yr-1 along A13.5 on the east. The west-east basin ΔCanth contrasts were most prominent in the tropical region (0-20°S) in the Surface Water (SW), approximately from equator to 35°S in the Subantarctic Mode Water (SAMW), and all latitudes in the Antarctic Intermediate Water (AAIW). Less Canth in the eastern basin than the western basin was caused by weaker ventilation driven by SAMW and AAIW formation and subduction and stronger Antarctic Bottom Water (AABW) formation in the former than the latter. In addition to the spatial heterogeneity, Canth increase rates accelerated from the 1990s to the 2000s, consistent with the overall increase in air-sea CO2 exchange in the South Atlantic Ocean. 
    more » « less