Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Planar magnetic microswimmers offer substantial potential for in vivo biomedical applications, owing to their efficient mass production via photolithography. In this study, we demonstrate the effective control of these microswimmers using an open-loop approach in environments with minimal external disturbances. We investigate their surface motion characteristics through both theoretical modeling and experimental testing under varying magnetic field strengths and rotation frequencies, identifying regions of stable and unstable motion. Additionally, we analyze how field frequency and strength influence surface motion speed and identify the frequencies that promote stability. Open-loop control of surface motion in fluid environments and swimming in channels is also demonstrated, highlighting the operational flexibility of these microswimmers. We further demonstrate swarm motion for both swimming and surface operations, exhibiting larger-scale coordination. Our findings emphasize their potential for future applications in biomedical engineering and microrobotics, marking a step forward in the development of microscale robotic systems.more » « lessFree, publicly-accessible full text available December 1, 2026
-
Abstract Chemically coated micro/nanoparticles are often used in medicine to enhance drug delivery and increase drug up-take into specific areas of the body. Using a recently discovered spontaneous symmetry breaking propulsion mechanism, we demonstrate that chemically coated microparticles can swim through mucus solution under precise navigation and that certain functionalizations can dynamically change propulsion behavior. For this investigation biotin, Bitotin-PEG3-amine, and biotin chitosan were chemically functionalized onto the surfaces of magnetic microparticles using an avidin–biotin complex. These chemicals were chosen because they are used prolifically in drug delivery applications, with PEG and chitosan having well known mucoadhesive effects. Coated microparticles were then suspended in mucus synthesized from porcine stomach mucins and propelled using rotating magnetic fields. The relationship between different chemical coatings, microparticle velocity, and controllability were thoroughly explored and discussed. Results indicate that the biotinylated surface coatings altered the propulsion behavior of microparticles, with performance differences interlinked to both magnetic field properties and localized mucus properties. Precisely controlled drug carrying microparticles are envisioned to help supplant traditional drug delivery methods and enhance existing medical techniques utilizing micro/nanoparticles.more » « less
-
Microrobots powered by an external magnetic field could be used for sophisticated medical applications such as cell treatment, micromanipulation, and noninvasive surgery inside the body. Untethered microrobot applications can benefit from haptic technology and telecommunication, enabling telemedical micro-manipulation. Users can manipulate the microrobots with haptic feedback by interacting with the robot operating system remotely in such applications. Artificially created haptic forces based on wirelessly transmitted data and model-based guidance can aid human operators with haptic sensations while manipulating microrobots. The system presented here includes a haptic device and a magnetic tweezer system linked together using a network-based teleoperation method with motion models in fluids. The magnetic microrobots can be controlled remotely, and the haptic interactions with the remote environment can be felt in real time. A time-domain passivity controller is applied to overcome network delay and ensure stability of communication. This study develops and tests a motion model for microrobots and evaluates two image-based 3D tracking algorithms to improve tracking accuracy in various Newtonian fluids. Additionally, it demonstrates that microrobots can group together to transport multiple larger objects, move through microfluidic channels for detailed tasks, and use a novel method for disassembly, greatly expanding their range of use in microscale operations. Remote medical treatment in multiple locations, remote delivery of medication without the need for physical penetration of the skin, and remotely controlled cell manipulations are some of the possible uses of the proposed technology.more » « lessFree, publicly-accessible full text available June 1, 2026
-
Planar magnetic microswimmers are well-suited for in vivo biomedical applications due to their cost-effective mass production through standard photolithography techniques. The precise control of their motion in diverse environments is a critical aspect of their application. This study demonstrates the control of these swimmers individually and as a swarm, exploring navigation through channels and showcasing their functional capabilities for future biomedical settings. We also introduce the capability of microswimmers for surface motion, complementing their traditional fluid-based propulsion and extending their functionality. Our research reveals that microswimmers with varying magnetization directions exhibit unique trajectory patterns, enabling complex swarm tasks. This study further delves into the behavior of these microswimmers in intricate environments, assessing their adaptability and potential for advanced applications. The findings suggest that these microswimmers could be pivotal in areas such as targeted drug delivery and precision medical procedures, marking significant progress in the biomedical and micro-robotic fields and offering new insights into their control and behavior in diverse environments.more » « less
-
Planar magnetic microswimmers bear great potential for in vivo biomedical applications as they can be mass‐produced at minimal costs using standard photolithography techniques. Therefore, it is central to understand how to control their motion. This study examines the propulsion of planar V‐shaped microswimmers in an aqueous solution powered by a conically rotating magnetic field and compares the experimental results with theory. Propulsion is investigated upon altering the cone angle of the driving field. It is shown that a V‐shaped microswimmer magnetized along its symmetry axis exhibits unidirectional in‐sync propulsion with a constant (frequency‐independent) velocity in a limited band of actuation frequencies. It is also demonstrated that the motion of individual and multiple in‐plane magnetized planar microswimmers in a conically rotating field can be efficiently controlled.more » « less
-
Abstract Magnetic achiral planar microswimmers can be massively fabricated at low cost and are envisioned to be useful for in vivo biomedical applications. To understand locomotion in representative in vivo environments, we investigated the swimming performance of achiral planar microswimmers in methylcellulose solutions. We observed that these microswimmers displayed very similar swimming characteristics in methylcellulose solutions as in water. Furthermore, this study indicated that the range of precession angles increased as the concentration of MC solution increased. Last, it was demonstrated that achiral planar microswimmers with similar precession angles exhibited nearly the same dimensionless speeds in different concentrations of the methylcellulose solutions. Upon understanding swimmer kinematics, more effective control over the achiral planar microswimmers can be achieved to perform multiple biomedical tasks in in vivo environments.more » « less
An official website of the United States government

Full Text Available