skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spontaneous symmetry breaking propulsion of chemically coated magnetic microparticles
Abstract Chemically coated micro/nanoparticles are often used in medicine to enhance drug delivery and increase drug up-take into specific areas of the body. Using a recently discovered spontaneous symmetry breaking propulsion mechanism, we demonstrate that chemically coated microparticles can swim through mucus solution under precise navigation and that certain functionalizations can dynamically change propulsion behavior. For this investigation biotin, Bitotin-PEG3-amine, and biotin chitosan were chemically functionalized onto the surfaces of magnetic microparticles using an avidin–biotin complex. These chemicals were chosen because they are used prolifically in drug delivery applications, with PEG and chitosan having well known mucoadhesive effects. Coated microparticles were then suspended in mucus synthesized from porcine stomach mucins and propelled using rotating magnetic fields. The relationship between different chemical coatings, microparticle velocity, and controllability were thoroughly explored and discussed. Results indicate that the biotinylated surface coatings altered the propulsion behavior of microparticles, with performance differences interlinked to both magnetic field properties and localized mucus properties. Precisely controlled drug carrying microparticles are envisioned to help supplant traditional drug delivery methods and enhance existing medical techniques utilizing micro/nanoparticles.  more » « less
Award ID(s):
2123824
PAR ID:
10376388
Author(s) / Creator(s):
;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
12
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This study investigated the high‐intensity focused ultrasound (HIFU)‐mediated propulsion of mesoporous silica nanoparticles (MSNs) and microspheres (MSMs). Nanoparticles are heavily sought as vehicles for drug delivery, but their transport through tissue is often restricted. Here, MSNs and MSMs are hydrophobically modified and coated with phospholipids to facilitate inertial cavitation to promote propulsion under HIFU. Modified nanoparticles show significantly enhanced cavitation and propulsion, achieving a maximum displacement of 250 µm (≈2500 body length) and speed of ≈1600 µm s−1(16 000 body length s−1), compared to unmodified nanoparticles (2 µm, 20 body length, 60 µm s−1, 600 body length). In contrast, microparticles demonstrate comparable cavitation responses. Modified microparticles reached a maximum speed of 4000 µm s−1(800 body length s−1) and displacement of 230 µm (46 body length), and unmodified microparticles achieved 2000 µm s−1(400 body length s−1) and 75 µm (15 body length). In all HIFU‐responsive samples, displacement and speed decreased with successive pulses, implying that particles fatigue with continued pulsing. Analyses of particle trajectories and rotational diffusion times suggest that cavitation occurs uniformly on particle surfaces rather than at specific sites. These principles are important for the design of future drug‐delivery vehicles capable of ultrasound‐triggered motion. 
    more » « less
  2. Ionically complexed nanoparticles were prepared from an anionic polysaccharide drug, heparin, entrapped by a positively charged chitosan polysaccharide. In this study, the encapsulation of heparin was studied to optimize properties needed for its oral drug delivery. Chitosan, used in a variety of biomedical applications, was selected as a cationic polymer for heparin encapsulation. These particles were prepared with a slightly positive charge and an appropriate size for oral drug delivery. The release profiles of these ionically complexed nanoparticles were improved by using FDA approved stabilizers, such as pluronic non-ionic surfactant and polyvinyl alcohol. These results obtained in vitro suggest that these stabilized, ionically complexed nanoparticles may be well-suited for the oral drug delivery of heparin into the gastrointestinal tract. 
    more » « less
  3. Medical micro/nanorobots have received tremendous attention over the past decades owing to their potential to be navigated into hard-to-reach tissues for a number of biomedical applications ranging from targeted drug/gene delivery, bio-isolation, detoxification, to nanosurgery. Despite the great promise, the majority of the past demonstrations are primarily under benchtop or in vitro conditions. Many developed micro/nanoscale propulsion mechanisms are based on the assumption of a homogeneous, Newtonian environment, while realistic biological environments are substantially more complex. Moving toward practical medical use, the field of micro/nanorobotics must overcome several major challenges including propulsion through complex media (such as blood, mucus, and vitreous) as well as deep tissue imaging and control in vivo . In this review article, we summarize the recent research efforts on investigating how various complexities in biological environments impact the propulsion of micro/nanoswimmers. We also highlight the emerging technological approaches to enhance the locomotion of micro/nanorobots in complex environments. The recent demonstrations of in vivo imaging, control and therapeutic medical applications of such micro/nanorobots are introduced. We envision that continuing materials and technological innovations through interdisciplinary collaborative efforts can bring us steps closer to the fantasy of “swallowing a surgeon”. 
    more » « less
  4. null (Ed.)
    Electrical stimulus-responsive drug delivery from conducting polymers such as polypyrrole (PPy) has been limited by lack of versatile polymerization techniques and limitations in drug-loading strategies. In the present study, we report an in-situ chemical polymerization technique for incorporation of biotin, as the doping agent, to establish electrosensitive drug release from PPy-coated substrates. Aligned electrospun polyvinylidene fluoride (PVDF) fibers were used as a substrate for the PPy-coating and basic fibroblast growth factor and nerve growth factor were the model growth factors demonstrated for potential applications in musculoskeletal tissue regeneration. It was observed that 18-h of continuous polymerization produced an optimal coating of PPy on the surface of the PVDF electrospun fibers with significantly increased hydrophilicity and no substantial changes observed in fiber orientation or individual fiber thickness. This PPy-PVDF system was used as the platform for loading the aforementioned growth factors, using streptavidin as the drug-complex carrier. The release profile of incorporated biotinylated growth factors exhibited electrosensitive release behavior while the PPy-PVDF complex proved stable for a period of 14 days and suitable as a stimulus responsive drug delivery depot. Critically, the growth factors retained bioactivity after release. In conclusion, the present study established a systematic methodology to prepare PPy coated systems with electrosensitive drug release capabilities which can potentially be used to encourage targeted tissue regeneration and other biomedical applications. 
    more » « less
  5. Micro- and nanorobots excel in navigating the intricate and often inaccessible areas of the human body, offering immense potential for applications such as disease diagnosis, precision drug delivery, detoxification, and minimally invasive surgery. Despite their promise, practical deployment faces hurdles, including achieving stable propulsion in complex in vivo biological environments, real-time imaging and localization through deep tissue, and precise remote control for targeted therapy and ensuring high therapeutic efficacy. To overcome these obstacles, we introduce a hydrogel-based, imaging-guided, bioresorbable acoustic microrobot (BAM) designed to navigate the human body with high stability. Constructed using two-photon polymerization, a BAM comprises magnetic nanoparticles and therapeutic agents integrated into its hydrogel matrix for precision control and drug delivery. The microrobot features an optimized surface chemistry with a hydrophobic inner layer to substantially enhance microbubble retention in biofluids with multiday functionality and a hydrophilic outer layer to minimize aggregation and promote timely degradation. The dual-opening bubble-trapping cavity design enables a BAM to maintain consistent and efficient acoustic propulsion across a range of biological fluids. Under focused ultrasound stimulation, the entrapped microbubbles oscillate and enhance the contrast for real-time ultrasound imaging, facilitating precise tracking and control of BAM movement through wireless magnetic navigation. Moreover, the hydrolysis-driven biodegradability of BAMs ensures its safe dissolution after treatment, posing no risk of long-term residual harm. Thorough in vitro and in vivo experimental evidence demonstrates the promising capabilities of BAMs in biomedical applications. This approach shows promise for advancing minimally invasive medical interventions and targeted therapeutic delivery. 
    more » « less