Although digital health solutions are increasingly popular in clinical psychiatry, one application that has not been fully explored is the utilization of survey technology to monitor patients outside of the clinic. Supplementing routine care with digital information collected in the “clinical whitespace” between visits could improve care for patients with severe mental illness. This study evaluated the feasibility and validity of using online self-report questionnaires to supplement in-person clinical evaluations in persons with and without psychiatric diagnoses. We performed a rigorous in-person clinical diagnostic and assessment battery in 54 participants with schizophrenia (N = 23), depressive disorder (N = 14), and healthy controls (N = 17) using standard assessments for depressive and psychotic symptomatology. Participants were then asked to complete brief online assessments of depressive (Quick Inventory of Depressive Symptomatology) and psychotic (Community Assessment of Psychic Experiences) symptoms outside of the clinic for comparison with the ground-truth in-person assessments. We found that online self-report ratings of severity were significantly correlated with the clinical assessments for depression (two assessments used: R = 0.63, p < 0.001; R = 0.73, p < 0.001) and psychosis (R = 0.62, p < 0.001). Our results demonstrate the feasibility and validity of collecting psychiatric symptom ratings through online surveys. Surveillance of this kind may be especially useful in detecting acute mental health crises between patient visits and can generally contribute to more comprehensive psychiatric treatment.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Kidney exchanges allow patients with end-stage renal disease to find a lifesaving living donor by way of an organized market. However, not all patients are equally easy to match, nor are all donor organs of equal quality---some patients are matched within weeks, while others may wait for years with no match offers at all. We propose the first decision-support tool for kidney exchange that takes as input the biological features of a patient-donor pair, and returns (i) the probability of being matched prior to expiry, and (conditioned on a match outcome), (ii) the waiting time for and (iii) the organ quality of the matched transplant. This information may be used to inform medical and insurance decisions. We predict all quantities (i, ii, iii) exclusively from match records that are readily available in any kidney exchange using a quantile random forest approach. To evaluate our approach, we developed two state-of-the-art realistic simulators based on data from the United Network for Organ Sharing that sample from the training and test distribution for these learning tasks---in our application these distributions are distinct. We analyze distributional shift through a theoretical lens, and show that the two distributions converge as the kidney exchange nears steady-state. We then show that our approach produces clinically-promising estimates using simulated data. Finally, we show how our approach, in conjunction with tools from the model explainability literature, can be used to calibrate and detect bias in matching policies.
-
While the stable marriage problem and its variants model a vast range of matching markets, they fail to capture complex agent relationships, such as the affiliation of applicants and employers in an interview marketplace. To model this problem, the existing literature on matching with externalities permits agents to provide complete and total rankings over matchings based off of both their own and their affiliates' matches. This complete ordering restriction is unrealistic, and further the model may have an empty core. To address this, we introduce the Dichotomous Affiliate Stable Matching (DASM) Problem, where agents' preferences indicate dichotomous acceptance or rejection of another agent in the marketplace, both for themselves and their affiliates. We also assume the agent's preferences over entire matchings are determined by a general weighted valuation function of their (and their affiliates') matches. Our results are threefold: (1) we use a human study to show that real-world matching rankings follow our assumed valuation function; (2) we prove that there always exists a stable solution by providing an efficient, easily-implementable algorithm that finds such a solution; and (3) we experimentally validate the efficiency of our algorithm versus a linear-programming-based approach.more » « less
-
Multimodal depression classification has gained immense popularity over the recent years. We develop a multimodal depression classification system using articulatory coordination features extracted from vocal tract variables and text transcriptions obtained from an automatic speech recognition tool that yields improvements of area under the receiver operating characteristics curve compared to unimodal classifiers (7.5% and 13.7% for audio and text respectively). We show that in the case of limited training data, a segment-level classifier can first be trained to then obtain a session-wise prediction without hindering the performance, using a multi-stage convolutional recurrent neural network. A text model is trained using a Hierarchical Attention Network (HAN). The multimodal system is developed by combining embeddings from the session-level audio model and the HAN text model.more » « less
-
COVID-19 exposure-notification apps have struggled to gain adoption. Existing literature posits as potential causes of this low adoption: privacy concerns, insufficient data transparency, and the type of appeal – collective- vs. individual-good – used to frame the app. As policy guidance suggests using tailored advertising to evaluate the effects of these factors, we present the first field study of COVID-19 contact tracing apps with a randomized, control trial of 14 different advertisements for CovidDefense, Louisiana’s COVID-19 exposure-notification app. We find that all three hypothesized factors – privacy, data transparency, and appeals framing – relate to app adoption, even when controlling for age, gender, and community density. Our results offer (1) the first field evidence supporting the use of collective-good appeals, (2) nuanced findings regarding the efficacy of data and privacy transparency, the effects of which are moderated by appeal framing and potential users’ demographics, and (3) field-evidence-based guidance for future efforts to encourage pro-social health technology adoption.more » « less