skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2124491

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Atmospheric aerosols exist as complex mixtures containing three or more compounds. Ternary aerosol mixtures composed of organic/organic/inorganic can undergo liquid–liquid phase separation (LLPS) under supersaturated conditions, affecting phase morphology and water uptake propensity. Phase separation and water uptake in ternary systems has previously been parameterized by oxygen to carbon (O[thin space (1/6-em)]:[thin space (1/6-em)]C) ratio; however, nitrogen containing organics, such as amino acid aerosols, also exist within complex mixtures. Yet, amino acid mixture CCN activity is poorly understood. In this study, we study the supersaturated hygroscopicity of three systems of internal mixtures containing ammonium sulfate (AS), 2-methylglutaric acid (2-MGA), and an amino acid. The three systems are AS/2-MGA/proline (Pro), AS/2-MGA/valine (Val), and AS/2-MGA/leucine (Leu). The amino acids are similar in O[thin space (1/6-em)]:[thin space (1/6-em)]C ratios but vary in solubility. Water-uptake, across a range of aerosol compositions in the ternary space, is measured using a cloud condensation nuclei counter (CCNC) from 0.4 to 1.7% supersaturation (SS). The single hygroscopicity parameter, κ, was calculated from CCNC measurements. All three systems exhibit two regions; one of these regions is phase separated mixtures when the composition is dominated by AS and 2-MGA; 2-MGA partitions to the droplet surface due to its surface-active nature and has a negligible contribution to water uptake. The second region is a homogeneous aerosol mixture, where all three compounds contribute to hygroscopicity. However, well mixed aerosol hygroscopicity is dependent on the solubility of the amino acid. Mixed Pro aerosols are the most hygroscopic while Leu aerosols are the least hygroscopic. Theoretical κ values were calculated using established models, including traditional κ-Köhler, O[thin space (1/6-em)]:[thin space (1/6-em)]C solubility and O[thin space (1/6-em)]:[thin space (1/6-em)]C-LLPS models. To account for the possible influence of polar N–C bonds on solubility and water uptake, the X[thin space (1/6-em)]:[thin space (1/6-em)]C parameterization is introduced through the X[thin space (1/6-em)]:[thin space (1/6-em)]C solubility and X[thin space (1/6-em)]:[thin space (1/6-em)]C-LLPS models; X[thin space (1/6-em)]:[thin space (1/6-em)]C is obtained from the ratio of oxygen and nitrogen to carbon. The study demonstrates competing organic–inorganic interactions driven by salting out effects in the presence of AS. Traditional methods cannot further encapsulate the non-ideal thermodynamic interactions within nitrogen-containing organic aerosol mixtures thus predictions of LLPS and hygroscopicity in nitrogen containing ternary systems should incorporate surface activity, O–C, N–C bonds, and salting out effects. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Nicole Riemer (Ed.)
    Aerosol particles in the atmosphere have the ability to uptake water and form droplets. The droplets formed can interact with solar radiation (indirect effect of aerosols) and influence the net radiative forcing. However, the magnitude of change in radiative forcing due to the indirect effect of aerosols remains uncertain due to the high variance in aerosol composition and mixing states, both spatial and temporally. As such, there is a need to measure the water-uptake of different aerosol particle groups under controlled conditions to gain insight into the water-uptake of complex ambient systems. In this work, the water-uptake (hygroscopicity) of internally and externally mixed ammonium sulfate – organic binary mixtures were directly measured via three methods and compared to droplet growth prediction models. We found that subsaturated water-uptake of ammonium sulfate-organic mixtures agreed with their supersaturated hygroscopicity, and mixing state information was able to be retrieved at both humidity regimes. In addition, we found that solubility-adjusted models may not be able to capture the water-uptake of viscous particles, and for soluble organic aerosol particles, bulk solubility may not be comparable to their solubility in a droplet. This work highlights the importance of using multiple complementary water-uptake measurement instruments to get a clearer picture of mixed aerosol particle hygroscopicity, especially for increasingly complex systems. 
    more » « less