skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2124934

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Moiré potential profile can form flat electronic bands and manifest correlated states of electrons, where carrier doping is essential for observing those correlations. In this work, we uncover a hidden but remarkable many-electron effect: doped carriers form a two-dimensional plasmon and strongly couple with quasiparticles to renormalize moiré potential and realize ultra-flat bands. Using many-body perturbation theory, we demonstrate this effect in twisted MoS2/WS2heterobilayer. The moiré potential is significantly enhanced upon carrier doping, and the bandwidth is reduced by order of magnitude, leading to drastic quenching of electronic kinetic energy and stronger correlation. We further predict that the competition between correlated mechanisms can be effectively controlled via doping, giving hope to a quantum transition between Mott and charge-transfer insulating states. Our work reveals that the potential renormalization effect of doping is much more significant in determining and controlling many-electron electronic correlations than sole filling-factor tuning in semiconducting moiré crystals.

     
    more » « less
  2. Free, publicly-accessible full text available August 29, 2025
  3. Free, publicly-accessible full text available January 26, 2025
  4. Free, publicly-accessible full text available December 26, 2024
  5. Free, publicly-accessible full text available December 13, 2024
  6. CsYbSe2 has an ideal triangular-lattice geometry with pronounced two-dimensionality, pseudospin-1/2 nature, and the absence of structural disorder. These excellent characteristics favor a quantum spin-liquid realization in this material. In this work, we applied quasihydrostatic compression methods to explore the structural behaviors. Our study reveals that CsYbSe2 undergoes a structural transition around 24 GPa, accompanied by a large volume collapse of ΔV /V0∼13%. The ambient hexagonal structure with the space group P63/mmcis lowered to the tetragonal structure (P4/mmm) under high pressure. Meanwhile, the color of CsYbSe2 changes gradually from red to black before the transition. Dramatic pressure-induced changes are clarified by the electronic structure calculations from the first principles, which indicate that the initial insulating ground state turns metallic in a squeezed lattice. These findings highlight Yb-based dichalcogenide delafossites as an intriguing material to probe novel quantum effects under high pressure. 
    more » « less
  7. Topological mosaic pattern (TMP) can be formed in two-dimensional (2D) moiré superlattices, a set of periodic and spatially separated domains with distinct topologies that give rise to periodic edge states on the domain walls. In this study, we demonstrate that these periodic edge states play a crucial role in determining global topological properties. By developing a continuum model for periodic edge states with 𝐶6⁢𝑧 and 𝐶3⁢𝑧 rotational symmetry, we predict that a global topological phase transition at the charge neutrality point (CNP) can be driven by the size of domain walls and moiré period. The Wannier representation analysis reveals that these periodic edge states are fundamentally chiral 𝑝𝑥±𝑖⁢𝑝𝑦 orbitals. The interplay between on-site chiral orbital rotation and neighboring hopping among chiral orbitals leads to band inversion and a topological phase transition. Our work establishes a general model for tuning local and global topological phases, paving the way for future research on strongly correlated topological flat minibands within topological mosaic patterns. 
    more » « less