Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 7, 2026
-
Existence of generalized Busemann functions and Gibbs measures for random walks in random potentialsFree, publicly-accessible full text available March 20, 2026
-
We consider planar directed last-passage percolation on the square lattice with general i.i.d. weights and study the geometry of the full set of semi-infinite geodesics in a typical realization of the random environment. The structure of the geodesics is studied through the properties of the Busemann functions viewed as a stochastic process indexed by the asymptotic direction. Our results are further connected to the ergodic program for and stability properties of random Hamilton–Jacobi equations. In the exactly solvable exponential model, our results specialize to give the first complete characterization of the uniqueness and coalescence structure of the entire family of semi-infinite geodesics for any model of this type. Furthermore, we compute statistics of locations of instability, where we discover an unexpected connection to simple symmetric random walk.more » « less
An official website of the United States government
