skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2126089

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Creeping faults are difficult to assess for seismic hazard because they may participate in rupture even though they likely cannot nucleate large earthquakes. The creeping central section of the San Andreas fault in California (USA) has not participated in a historical large earthquake; however, earthquake ruptures nucleating in the locked northern and southern sections may propagate through the creeping section. We used biomarker thermal maturity and K/Ar dating on samples from the San Andreas Fault Observatory at Depth to look for evidence of earthquakes. Biomarkers show evidence of many earthquakes with displacements >1.5 m in and near a 3.5-m-wide patch of the fault. We show that K/Ar ages decrease with thermal maturity, and partial resetting occurs during coseismic heating. Therefore, measured ages provide a maximum constraint on earthquake age, and the youngest earthquakes here are younger than 3 Ma. Our results demonstrate that creeping faults may host large earthquakes over longer time scales. 
    more » « less