skip to main content


Title: History of earthquakes along the creeping section of the San Andreas fault, California, USA
Abstract Creeping faults are difficult to assess for seismic hazard because they may participate in rupture even though they likely cannot nucleate large earthquakes. The creeping central section of the San Andreas fault in California (USA) has not participated in a historical large earthquake; however, earthquake ruptures nucleating in the locked northern and southern sections may propagate through the creeping section. We used biomarker thermal maturity and K/Ar dating on samples from the San Andreas Fault Observatory at Depth to look for evidence of earthquakes. Biomarkers show evidence of many earthquakes with displacements >1.5 m in and near a 3.5-m-wide patch of the fault. We show that K/Ar ages decrease with thermal maturity, and partial resetting occurs during coseismic heating. Therefore, measured ages provide a maximum constraint on earthquake age, and the youngest earthquakes here are younger than 3 Ma. Our results demonstrate that creeping faults may host large earthquakes over longer time scales.  more » « less
Award ID(s):
2126089
NSF-PAR ID:
10356089
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Geology
Volume:
50
Issue:
4
ISSN:
0091-7613
Page Range / eLocation ID:
516 to 521
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    SUMMARY We examine localization processes of low magnitude seismicity in relation to the occurrence of large earthquakes using three complementary analyses: (i) estimated production of rock damage by background events, (ii) evolving occupied fractional area of background seismicity and (iii) progressive coalescence of individual earthquakes into clusters. The different techniques provide information on different time scales and on the spatial extent of weakened damaged regions. Techniques (i) and (ii) use declustered catalogues to avoid the occasional strong fluctuations associated with aftershock sequences, while technique (iii) examines developing clusters in entire catalogue data. We analyse primarily earthquakes around large faults that are locked in the interseismic periods, and examine also as a contrasting example seismicity from the creeping Parkfield section of the San Andreas fault. Results of analysis (i) show that the M > 7 Landers 1992, Hector Mine 1999, El Mayor-Cucapah 2010 and Ridgecrest 2019 main shocks in Southern and Baja California were preceded in the previous decades by generation of rock damage around the eventual rupture zones. Analysis (ii) reveals localization (reduced fractional area) 2–3 yr before these main shocks and before the M > 7 Düzce 1999 earthquake in Turkey. Results with technique (iii) indicate that individual events tend to coalesce rapidly to clusters in the final 1–2 yr before the main shocks. Corresponding analyses of data from the Parkfield region show opposite delocalization patterns and decreasing clustering before the 2004 M6 earthquake. Continuing studies with these techniques, combined with analysis of geodetic data and insights from laboratory experiments and model simulations, might improve the ability to track preparation processes leading to large earthquakes. 
    more » « less
  2. Abstract We present the high-resolution Parkfield matched filter relocated earthquake (PKD-MR) catalog for the 2004 Mw 6 Parkfield earthquake sequence in central California. We use high-quality seismic data recorded by the borehole High Resolution Seismic Network combined with matched filter detection and relocations from cross-correlation derived differential travel times. We determine the magnitudes of newly detected events by computing the amplitude ratio between the detections and templates using a principal component fit. The relocated catalog spans from 6 November 2003 to 28 March 2005 and contains 13,914 earthquakes, which is about three times the number of events listed in the Northern California Seismic Network catalog. Our results on the seismicity rate changes before the 2004 mainshock do not show clear precursory signals, although we find an increase in the seismic activity in the creeping section of the San Andreas fault (SAF) (about ∼30 km northwest of the mainshock epicenter) in the weeks prior to the mainshock. We also observe a decrease in the b-value parameter in the Gutenberg–Richter relationship in the creeping section in the weeks prior to the mainshock. Our results suggest stress is increasingly released seismically in the creeping section, accompanied by a decreasing aseismic creeping rate before the mainshock occurrence. However, b-value and seismicity rates remain stable in the Parkfield section where the 2004 mainshock ruptured. This updated catalog can be used to study the evolution of aftershocks and their relations to afterslip following the 2004 Parkfield mainshock, seismicity before the mainshock, and how external stresses interact with the Parkfield section of the SAF and the 2004 sequence. 
    more » « less
  3. null (Ed.)
    International Ocean Discovery Program (IODP) Expedition 372 combines two research topics, slow slip events (SSEs) on subduction faults (IODP Proposal 781A-Full) and actively deforming gas hydrate–bearing landslides (Proposal 841-APL). Our study area on the Hikurangi margin east of New Zealand provides unique locations for addressing both research topics. Gas hydrates have long been suspected of being involved in seafloor failure; not much evidence, however, has been found to date for gas hydrate–related submarine landslides. Solid, icelike gas hydrate in sediment pores is generally thought to increase seafloor strength, as confirmed by a number of laboratory measurements. Dissociation of gas hydrate to water and overpressured gas, on the other hand, may destabilize the seafloor, potentially causing submarine landslides. The Tuaheni Landslide Complex on the Hikurangi margin shows evidence for active, creeping deformation. Intriguingly, the landward edge of creeping coincides with the pinchout of the base of gas hydrate stability (BGHS) on the seafloor. We therefore hypothesize that gas hydrate may be linked to creeping by (1) repeated small-scale sliding at the BGHS, in a variation of the conventional model linking gas hydrates and seafloor failure; (2) overpressure at the BGHS due to a permeability reduction linked to gas hydrates, which may lead to hydrofracturing, weakening the seafloor and allowing transmission of pressure into the gas hydrate stability zone; or (3) icelike viscous deformation of gas hydrates in sediment pores, similar to onshore rock glaciers. The latter two processes imply that gas hydrate itself is involved in creeping, constituting a paradigm shift in relating gas hydrates to submarine slope failure. Alternatively, creeping may not be related to gas hydrates but instead be caused by repeated pressure pulses or linked to earthquake-related liquefaction. We have devised a coring and logging program to test our hypotheses. SSEs at subduction zones are an enigmatic form of creeping fault behavior. At the northern Hikurangi subduction margin (HSM), they are among the best-documented and shallowest on Earth. They recur about every 2 y and may extend close to the trench, where clastic and pelagic sediments about 1.0–1.5 km thick overlie the subducting, seamount-studded Hikurangi Plateau. The northern HSM thus provides an excellent setting to use IODP capabilities to discern the mechanisms behind slow slip fault behavior, as proposed in IODP Proposal 781A-Full. The objectives of Proposal 781A-Full will be implemented across two related IODP expeditions, 372 and 375. Expedition 372 will undertake logging while drilling (LWD) at three sites targeting the upper plate (midslope basin, proposed Site HSM-01A), the frontal thrust (proposed Site HSM-18A), and the subducting section in the trench (proposed Site HSM-05A). Expedition 375 will undertake coring at the same sites, as well as an additional seamount site on the subducting plate, and implement the borehole observatory objectives. The data from each expedition will be shared between both scientific parties. Collectively, the LWD and coring data will be used to (1) characterize the compositional, structural, thermal, and diagenetic state of the incoming plate and the shallow plate boundary fault near the trench, which comprise the protolith and initial conditions for fault zone rock associated with SSEs at greater depth, and (2) characterize the material properties, thermal regime, and stress conditions in the upper plate above the SSE source region. These data will be used during Expedition 375 to guide the installation of CORK observatories at the frontal thrust and in the upper plate above the SSE source to monitor temporal variations in deformation, fluid flow, seismicity, and physical and chemical properties throughout the SSE cycle (Saffer et al., 2017). Together, these data will test a suite of hypotheses about the fundamental mechanics and behavior of SSEs and their relationship to great earthquakes along the subduction interface. 
    more » « less
  4. Abstract

    Imaging tectonic creep along active faults is critical for measuring strain accumulation and ultimately understanding the physical processes that guide creep and the potential for seismicity. We image tectonic deformation along the central creeping section of the San Andreas Fault at the Dry Lake Valley paleoseismic site (36.468°N, 121.055°W) using three data sets with varying spatial and temporal scales: (1) an Interferometric Synthetic Aperture Radar (InSAR) velocity field with an ~100‐km footprint produced from Sentinel‐1 satellite imagery, (2) light detection and ranging (lidar) and structure‐from‐motion 3‐D topographic differencing that resolves a decade of deformation over a 1‐km aperture, and (3) surface fractures that formed over the 3‐ to 4‐m wide fault zone during a drought from late 2012 to 2014. The InSAR velocity map shows that shallow deformation is localized to the San Andreas Fault. We demonstrate a novel approach for differencing airborne lidar and structure‐from‐motion topography that facilitates resolving deformation along and adjacent to the San Andreas Fault. The 40‐m resolution topographic differencing resolves a 2.5 ± 0.2 cm/yr slip rate localized to the fault. The opening‐mode fractures accommodate cm/yr of fault slip. A 90% ± 30% of the 1‐km aperture deformation is accommodated over the several meter‐wide surface trace of the San Andreas Fault. The extension direction inferred from the opening‐mode fractures and topographic differencing is 40°–48° from the local trend of the San Andreas Fault. The localization of deformation likely reflects the well‐oriented and mature fault.

     
    more » « less
  5. SUMMARY

    We present our estimations and comparisons of the in situ Vp/Vs ratios and seismicity characteristics for the Parkfield segment of the San Andreas fault in northern California and the San Jacinto Fault Zone and its adjacent regions in southern California. Our results show that the high-resolution in situ Vp/Vs ratios are much more complex than the tomographic Vp/Vs models. They show similar variation patterns to those in the tomographic Vp models, indicating that Vp/Vs ratios are controlled by material properties but are also strongly influenced by fluid contents. In Parkfield, we observe velocity contrasts between the creeping and locked sections. In southern California, we see small-scale anomalous Vp/Vs variation patterns, especially where fault segments intersect, terminate and change orientations. In addition, our investigation confirms that the seismicity in Parkfield is more repeatable than in southern California. However, the earthquakes in the southernmost portion of the San Andreas fault, the trifurcation area of the San Jacinto Fault Zone and the Imperial fault are as much likely falling into clusters as those in Parkfield. The correlation of highly similar events with anomalous in situ Vp/Vs ratios supports the important role of fluids in the occurrence of repeating earthquakes. The high-resolution Vp/Vs ratio estimation method and the corresponding results are helpful for revealing roles of fluids in driving earthquake, fault interaction and stress distribution in fault zones.

     
    more » « less