skip to main content


Search for: All records

Award ID contains: 2126190

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2024
  2. Cullum, Brian M. ; McLamore, Eric S. ; Kiehl, Douglas (Ed.)
    Free, publicly-accessible full text available June 14, 2024
  3. The development of novel materials is essential for the next generation of electric vehicles and portable devices. Tin oxide (SnO2), with its relatively high theoretical capacity, has been considered as a promising anode material for applications in energy storage devices. However, the SnO2 anode material suffers from poor conductivity and huge volume expansion during charge/discharge cycles. In this study, we evaluated an approach to control the conductivity and volume change of SnO2 through a controllable and effective method by confining different percentages of SnO2 nanoparticles into carbon nanotubes (CNTs). The binder-free confined SnO2 in CNT composite was deposited via an electrostatic spray deposition technique. The morphology of the synthesized and deposited composite was evaluated by scanning electron microscopy and high-resolution transmission electron spectroscopy. The binder-free 20% confined SnO2 in CNT anode delivered a high reversible capacity of 770.6 mAh g−1. The specific capacity of the anode increased to 1069.7 mAh g−1 after 200 cycles, owing to the electrochemical milling effect. The delivered specific capacity after 200 cycles shows that developed novel anode material is suitable for lithium-ion batteries (LIBs). 
    more » « less
  4. Sensitive and flexible pressure sensors have invoked considerable interest for a broad range of applications in tactile sensing, physiological sensing, and flexible electronics. The barrier between high sensitivity and low fabrication cost needs to be addressed to commercialize such flexible pressure sensors. A low-cost sacrificial template-assisted method for the capacitive sensor has been reported herein, utilizing a porous Polydimethylsiloxane (PDMS) polymer and a multiwalled carbon nanotube (MWCNT) composite-based dielectric layer. The sensor shows high sensitivity of 2.42 kPa−1 along with a low limit of detection of 1.46 Pa. The high sensitivity originates from adding MWCNT to PDMS, increasing the composite polymer’s dielectric constant. Besides this, the pressure sensor shows excellent stability at a cyclic loading of 9000 cycles, proving its reliability for long-lasting application in tactile and physiological sensing. The high sensitivity of the sensor is suitable for the detection of small deformations such as pulse waveforms as well as tactile pressure sensing. In addition, the paper demonstrates a simultaneous contact and non-contact sensing capability suitable for dual sensing (pressure and proximity) with a single data readout system. The dual-mode sensing capability may open opportunities for realizing compact systems in robotics, gesture control, contactless applications, and many more. The practicality of the sensor was shown in applications such as tactile sensing, Morse code generator, proximity sensing, and pulse wave sensing. 
    more » « less
  5. Wearable flexible piezo-resistive pressure sensors hold a wide-ranging potential in human health monitoring, electronic skin, robotic limbs, and other human–machine interfaces. Out of the most successful recent efforts for arterial pulse monitoring are sensors with micro-patterned conductive elastomers. However, a low-current output signal (typically in the range of nano-amperes) and bulky and expensive measurement equipment for useful signal acquisition inhibits their wearability. Herein, through a finite element analysis we establish the design rules for a highly sensitive piezo-resistive pressure sensor with an output that is high enough to be detectable by simple and inexpensive circuits and therefore ensure wearability. We also show that, out of four frequently reported micro-feature shapes in micro-patterned piezo-resistive sensors, the micro-dome and micro-pyramid yield the highest sensitivity. Furthermore, investigations of different conductivity values of micro-patterned elastomers found that coating the elastomer with a conductive material (usually metallic) leads to higher current response when compared to composited conductive elastomers. Finally, the geometric parameters and spatial configurations of micro-pyramid design of piezo-resistive sensors were optimized. The results show that an enhanced sensitivity and higher current output is achieved by the lower spatial density configuration of three micro-features per millimeter length, a smaller feature size of around 100 μm, and a 60–50 degrees pyramid angle. 
    more » « less