skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Time-Domain and Frequency-Domain Mappings of Voltage-to-Charge and Charge-to-Voltage in Capacitive Devices
Award ID(s):
2126190
PAR ID:
10334095
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Transactions on Circuits and Systems II: Express Briefs
ISSN:
1549-7747
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. Emerging applications like a drone and an autonomous vehicle require system-on-a-chips (SoCs) with high reliability, e.g., the mean-time-between-failure (MTBF) needs to be over tens of thousands of hours [1]. Meanwhile, as these applications require increasingly higher performance and energy efficiency, a multi-core architecture is often desirable. Here, each core operates in an independent voltage/frequency (V/F) domain, ideally from the near-threshold voltage (NTV) to super-threshold, while communicating with one another via a network-on-chip (NoC) [2]. However, this makes it challenging to ensure robustness in clock domain crossing against metastability. Metastability becomes even more critical to NTV circuits since metastability resolution time constant T grows super-linearly with voltage scaling [3]. Conventionally, an NoC uses multi-stage (4 stages in [4]) synchronizers to improve MTBF, but they increase latency and cannot completely eliminate metastability. Recently, [5] proposed a novel NTV flip-flop, which has a lower probability of having metastability. Another recent work [6] proposed to detect the necessary condition of metastability and mitigate it by modulating the RX clock and also requesting retransmission to guarantee data correctness. However, as it detects a necessary condition, not actual metastability, it tends to overly request retransmission, hurting latency, throughput, and energy efficiency. 
    more » « less