skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2126643

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Bayer pattern is a widely used Color Filter Array (CFA) for digital image sensors, efficiently capturing different light wavelengths on different pixels without the need for a costly ISP pipeline. The resulting single-channel raw Bayer images offer benefits such as spectral wavelength sensitivity and low time latency. However, object detection based on Bayer images has been underexplored due to challenges in human observation and algorithm design caused by the discontinuous color channels in adjacent pixels. To address this issue, we propose the BayerDetect network, an end-to-end deep object detection framework that aims to achieve fast, accurate, and memory-efficient object detection. Unlike RGB color images, where each pixel encodes spectral context from adjacent pixels during ISP color interpolation, raw Bayer images lack spectral context. To enhance the spectral context, the BayerDetect network introduces a spectral frequency attention block, transforming the raw Bayer image pattern to the frequency domain. In object detection, clear object boundaries are essential for accurate bounding box predictions. To handle the challenges posed by alternating spectral channels and mitigate the influence of discontinuous boundaries, the BayerDetect network incorporates a spatial attention scheme that utilizes deformable convolutional kernels in multiple scales to explore spatial context effectively. The extracted convolutional features are then passed through a sparse set of proposal boxes for detection and classification. We conducted experiments on both public and self-collected raw Bayer images, and the results demonstrate the superb performance of the BayerDetect network in object detection tasks. 
    more » « less
    Free, publicly-accessible full text available October 23, 2024
  2. Single image 3D face reconstruction with accurate geometric details is a critical and challenging task due to the similar appearance on the face surface and fine details in organs. In this work, we introduce a self-supervised 3D face reconstruction approach from a single image that can recover detailed textures under different camera settings. The proposed network learns high-quality disparity maps from stereo face images during the training stage, while just a single face image is required to generate the 3D model in real applications. To recover fine details of each organ and facial surface, the framework introduces facial landmark spatial consistency to constrain the face recovering learning process in local point level and segmentation scheme on facial organs to constrain the correspondences at the organ level. The face shape and textures will further be refined by establishing holistic constraints based on the varying light illumination and shading information. The proposed learning framework can recover more accurate 3D facial details both quantitatively and qualitatively compared with state-of-the-art 3DMM and geometry-based reconstruction algorithms based on a single image. 
    more » « less