Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In the era of big data, materials science workflows need to handle large-scale data distribution, storage, and computation. Any of these areas can become a performance bottleneck. We present a framework for analyzing internal material structures (e.g., cracks) to mitigate these bottlenecks. We demonstrate the effectiveness of our framework for a workflow performing synchrotron X-ray computed tomography reconstruction and segmentation of a silica-based structure. Our framework provides a cloud-based, cutting-edge solution to challenges such as growing intermediate and output data and heavy resource demands during image reconstruction and segmentation. Specifically, our framework efficiently manages data storage, scaling up compute resources on the cloud. The multi-layer software structure of our framework includes three layers. A top layer uses Jupyter notebooks and serves as the user interface. A middle layer uses Ansible for resource deployment and managing the execution environment. A low layer is dedicated to resource management and provides resource management and job scheduling on heterogeneous nodes (i.e., GPU and CPU). At the core of this layer, Kubernetes supports resource management, and Dask enables large-scale job scheduling for heterogeneous resources. The broader impact of our work is four-fold: through our framework, we hide the complexity of the cloud’s software stack to the user who otherwise is required to have expertise in cloud technologies; we manage job scheduling efficiently and in a scalable manner; we enable resource elasticity and workflow orchestration at a large scale; and we facilitate moving the study of nonporous structures, which has wide applications in engineering and scientific fields, to the cloud. While we demonstrate the capability of our framework for a specific materials science application, it can be adapted for other applications and domains because of its modular, multi-layer architecture.more » « less
-
Abstract. Global change research demands a convergence among academic disciplines to understand complex changes in Earth system function. Limitations related to data usability and computing infrastructure, however, present barriers to effective use of the research tools needed for this cross-disciplinary collaboration. To address these barriers, we created a computational platform that pairs meteorological data and site-level ecosystem characterizations from the National Ecological Observatory Network (NEON) with the Community Terrestrial System Model (CTSM) that is developed with university partners at the National Center for Atmospheric Research (NCAR). This NCAR–NEON system features a simplified user interface that facilitates access to and use of NEON observations and NCAR models. We present preliminary results that compare observed NEON fluxes with CTSM simulations and describe how the collaboration between NCAR and NEON that can be used by the global change research community improves both the data and model. Beyond datasets and computing, the NCAR–NEON system includes tutorials and visualization tools that facilitate interaction with observational and model datasets and further enable opportunities for teaching and research. By expanding access to data, models, and computing, cyberinfrastructure tools like the NCAR–NEON system will accelerate integration across ecology and climate science disciplines to advance understanding in Earth system science and global change.