skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: AVA: Towards Autonomous Visualization Agents through Visual Perception‐Driven Decision‐Making
Abstract With recent advances in multi‐modal foundation models, the previously text‐only large language models (LLM) have evolved to incorporate visual input, opening up unprecedented opportunities for various applications in visualization. Compared to existing work on LLM‐based visualization works that generate and control visualization with textual input and output only, the proposed approach explores the utilization of the visual processing ability of multi‐modal LLMs to develop Autonomous Visualization Agents (AVAs) that can evaluate the generated visualization and iterate on the result to accomplish user‐defined objectives defined through natural language. We propose the first framework for the design of AVAs and present several usage scenarios intended to demonstrate the general applicability of the proposed paradigm. Our preliminary exploration and proof‐of‐concept agents suggest that this approach can be widely applicable whenever the choices of appropriate visualization parameters require the interpretation of previous visual output. Our study indicates that AVAs represent a general paradigm for designing intelligent visualization systems that can achieve high‐level visualization goals, which pave the way for developing expert‐level visualization agents in the future.  more » « less
Award ID(s):
2138811 2127548 1941085 1842042
PAR ID:
10548488
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Euro Graphics
Date Published:
Journal Name:
Computer Graphics Forum
Volume:
43
Issue:
3
ISSN:
0167-7055
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, we introduce SMART-LLM, an innovative framework designed for embodied multi-robot task planning. SMART-LLM: Smart Multi-Agent Robot Task Planning using Large Language Models (LLMs), harnesses the power of LLMs to convert high-level task instructions provided as input into a multi-robot task plan. It accomplishes this by executing a series of stages, including task decomposition, coalition formation, and task allocation, all guided by programmatic LLM prompts within the few-shot prompting paradigm. We create a benchmark dataset designed for validating the multi-robot task planning problem, encompassing four distinct categories of high-level instructions that vary in task complexity. Our evaluation experiments span both simulation and real-world scenarios, demonstrating that the proposed model can achieve promising results for generating multi-robot task plans. The experimental videos, code, and datasets from the work can be found at https://sites.google.com/view/smart-llm/. 
    more » « less
  2. Visual Question Answering (VQA) is a fundamental task in computer vision and natural language process fields. Although the “pre-training & finetuning” learning paradigm significantly improves the VQA performance, the adversarial robustness of such a learning paradigm has not been explored. In this paper, we delve into a new problem: using a pre-trained multimodal source model to create adversarial image-text pairs and then transferring them to attack the target VQA models. Correspondingly, we propose a novel VQATTACK model, which can iteratively generate both im- age and text perturbations with the designed modules: the large language model (LLM)-enhanced image attack and the cross-modal joint attack module. At each iteration, the LLM-enhanced image attack module first optimizes the latent representation-based loss to generate feature-level image perturbations. Then it incorporates an LLM to further enhance the image perturbations by optimizing the designed masked answer anti-recovery loss. The cross-modal joint attack module will be triggered at a specific iteration, which updates the image and text perturbations sequentially. Notably, the text perturbation updates are based on both the learned gradients in the word embedding space and word synonym-based substitution. Experimental results on two VQA datasets with five validated models demonstrate the effectiveness of the proposed VQATTACK in the transferable attack setting, compared with state-of-the-art baselines. This work revealsa significant blind spot in the “pre-training & fine-tuning” paradigm on VQA tasks. The source code can be found in the link https://github.com/ericyinyzy/VQAttack. 
    more » « less
  3. Abstract The rise of Large Language Models (LLMs) and generative visual analytics systems has transformed data‐driven insights, yet significant challenges persist in accurately interpreting users analytical and interaction intents. While language inputs offer flexibility, they often lack precision, making the expression of complex intents inefficient, error‐prone, and time‐intensive. To address these limitations, we investigate the design space of multimodal interactions for generative visual analytics through a literature review and pilot brainstorming sessions. Building on these insights, we introduce a highly extensible workflow that integrates multiple LLM agents for intent inference and visualization generation. We develop InterChat, a generative visual analytics system that combines direct manipulation of visual elements with natural language inputs. This integration enables precise intent communication and supports progressive, visually driven exploratory data analyses. By employing effective prompt engineering, and contextual interaction linking, alongside intuitive visualization and interaction designs, InterChat bridges the gap between user interactions and LLM‐driven visualizations, enhancing both interpretability and usability. Extensive evaluations, including two usage scenarios, a user study, and expert feedback, demonstrate the effectiveness of InterChat. Results show significant improvements in the accuracy and efficiency of handling complex visual analytics tasks, highlighting the potential of multimodal interactions to redefine user engagement and analytical depth in generative visual analytics. 
    more » « less
  4. Data visualizations help extract insights from datasets, but reaching these insights requires decomposing high level goals into low-level analytic tasks that can be complex due to varying degrees of data literacy and visualization experience. Recent advancements in large language models (LLMs) have shown promise for lowering barriers for users to achieve tasks such as writing code and may likewise facilitate visualization insight. Scalable Vector Graphics (SVG), a text-based image format common in data visualizations, matches well with the text sequence processing of transformer-based LLMs. In this paper, we explore the capability of LLMs to perform 10 low-level visual analytic tasks defined by Amar, Eagan, and Stasko directly on SVG-based visualizations. Using zero-shot prompts, we instruct the models to provide responses or modify the SVG code based on given visualizations. Our findings demonstrate that LLMs can effectively modify existing SVG visualizations for some tasks like Cluster but perform poorly on tasks requiring mathematical operations like Compute Derived Value. We also discovered that LLM performance can vary based on factors such as the number of data points, the presence of value labels, and the chart type. Our findings contribute to gauging the general capabilities of LLMs and highlight the need for further exploration and development to fully harness their potential in supporting visual analytic tasks. 
    more » « less
  5. Writing well requires not only expressing ideas but also refining them through revision, a process facilitated by reflection. Prior research suggests that feedback delivered through dialogues, such as those in writing center tutoring sessions, can help writers reflect more thoughtfully on their work compared to static feedback. Recent advancements in multi-modal large language models (LLMs) now offer new possibilities for supporting interactive and expressive voice-based reflection in writing. In particular, we propose that LLM-generated static feedback can be repurposed as conversation starters, allowing writers to seek clarification, request examples, and ask follow-up questions, thereby fostering deeper reflection on their writing. We argue that voice-based interaction can naturally facilitate this conversational exchange, encouraging writers' engagement with higher-order concerns, facilitating iterative refinement of their reflections, and reduce cognitive load compared to text-based interactions. To investigate these effects, we propose a formative study exploring how text vs. voice input influence writers' reflection and subsequent revisions. Findings from this study will inform the design of intelligent and interactive writing tools, offering insights into how voice-based interactions with LLM-powered conversational agents can support reflection and revision. 
    more » « less