skip to main content


Search for: All records

Award ID contains: 2127745

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The family Mutillidae (Hymenoptera) is a species‐rich group of aculeate wasps that occur worldwide. The higher‐level classification of the family has historically been controversial due, in part, to the extreme sexual dimorphism exhibited by these insects and their morphological similarity to other wasp taxa that also have apterous females. Modern hypotheses on the internal higher classification of Mutillidae have been exclusively based on morphology and, further, they include Myrmosinae as a mutillid subfamily. In contrast, several molecular‐based family‐level studies of Aculeata recovered Myrmosinae as a nonmutillid taxon. To test the validity of these morphology‐based classifications and the phylogenetic placement of the controversial taxon Myrmosinae, a phylogenomic study of Mutillidae was conducted using ultraconserved elements (UCEs). All currently recognized subfamilies and tribes of Mutillidae were represented in this study using 140 ingroup taxa. The maximum likelihood criterion (ML) and the maximum parsimony criterion (MP) were used to infer the phylogenetic relationships within the family and related taxa using an aligned data set of 238,764 characters; the topologies of these respective analyses were largely congruent. The modern higher classification of Mutillidae, based on morphology, is largely congruent with the phylogenomic results of this study at the subfamily level, whereas the tribal classification is poorly supported. The subfamily Myrmosinae was recovered as sister to Sapygidae in the ML analysis and sister to Sapygidae + Pompilidae in the MP analysis; it is consequently raised to the family level, Myrmosidae,stat.nov.The two constituent tribes of Myrmosidae are raised to the subfamily level, Kudakrumiinae,stat.nov., and Myrmosinae,stat.nov.All four recognized tribes of Mutillinae were found to be non‐monophyletic; three additional mutilline clades were recovered in addition to Ctenotillini, Mutillini, Smicromyrmini, and Trogaspidiini sensu stricto. Three new tribes are erected for members of these clades: Pristomutillini Waldren,trib.nov., Psammothermini Waldren,trib.nov., and Zeugomutillini Waldren,trib.nov.All three recognized tribes of Sphaeropthalminae were found to be non‐monophyletic; six additional sphaeropthalmine clades were recovered in addition to Dasymutillini, Pseudomethocini, and Sphaeropthalmini sensu stricto. The subtribe Ephutina of Mutillinae: Mutillini was found to be polyphyletic, with theEphutagenus‐group recovered within Sphaeropthalminae and theOdontomutillagenus‐group recovered as sister to Myrmillinae + Mutillinae. Consequently, the subtribe Ephutina is transferred from Mutillinae: Mutillini and is raised to a tribe within Sphaeropthalminae, Ephutini,stat.nov.Further, the taxon Odontomutillinae,stat.nov., is raised from a synonym of Ephutina to the subfamily level. The sphaeropthalmine tribe Pseudomethocini was found to be polyphyletic, with the subtribe Euspinoliina recovered as a separate clade in Sphaeropthalminae; consequently, Euspinoliina is raised to a tribe, Euspinoliini,stat.nov., in Sphaeropthalminae. The dasylabrine tribe Apteromutillini was recovered within Dasylabrini and is proposed as a new synonym of Dasylabrinae. Finally, dating analyses were conducted to infer the ages of the Pompiloidea families (Mutillidae, Myrmosidae, Pompilidae, and Sapygidae) and the ages of the Mutillidae subfamilies and tribes.

     
    more » « less
  2. Ptilothrix Cresson is a genus of New World bees with an amphitropical distribution. Like other genera in the tribe Emphorini, Ptilothrix have narrow pollen preferences. These solitary ground-nesting bees exhibit a remarkable nesting behavior in which females carry water from ponds to facilitate the excavation of the hard soil where they nest. With 16 described species, there are few taxonomic studies and, before this work, a lack of taxonomic treatments for the species in North America. Thus, in this study we revised and recognized four species for the region: Ptilothrix bombiformis Cresson, Ptilothrix sumichrasti Cresson, Ptilothrix chiricahua Florez-Gomez & Danforth, sp. nov. and Ptilothrix zacateca Florez-Gomez & Danforth, sp. nov. We describe and illustrate males and females of the two new species. We also present diagnoses for the four species, a key to identify them, and a map of their geographic distributions. 
    more » « less
  3. The Neotropical species of the subgenus Ceratina (Zadontomerus) Ashmead are revised. We recognize seven new species, giving a total of 10 species for the region: Ceratina (Zadontomerus) capitosa Smith, C. (Z.) ignara Cresson, C. (Z.) nautlana Cockerell, C. (Z.) kopili new species, C. (Z.) basaltica new species, C. sapphira new species, C. (Z.) indigovirens new species, C. (Z.) rehanae new species, C. (Z.) raquelitae new species, and C. (Z.) tepetlana new species. We propose the following synonymies: C. abdominalis Smith, C. tehuacana Strand, and C. parignara Cockerell under C. (Z.) ignara; and C. bakeri Smith and C. nigriventris Friese under C. (Z.) nautlana. Also, we describe the previously unknown male of C. capitosa, and provide a key to the species, diagnoses, descriptions and illustrations of the new species. 
    more » « less
  4. Abstract Brood parasites represent a substantial but often poorly studied fraction of the wider diversity of bees. Brood parasitic bees complete their life cycles by infiltrating the nests of solitary host bees thereby enabling their offspring to exploit the food provisions intended for the host’s offspring. Here, we present the draft assembly of the bee Holcopasites calliopsidis, the first brood parasitic species to be the subject of detailed genomic analysis. Consistent with previous findings on the genomic signatures of parasitism more broadly, we find that H. calliopsidis has the smallest genome currently known among bees (179 Mbp). This small genome does not appear to be the result of purging of repetitive DNA, with some indications of novel repetitive elements which may show signs of recent expansion. Nor does H. calliopsidis demonstrate any apparent net loss of genic content in comparison with non-parasitic species, though many individual gene families do show significant contractions. Although the basis of the small genome size of this species remains unclear, the identification of over 12,000 putative genes -with functional annotation for nearly 10,000 of these—is an important step in investigating the genomic basis of brood parasitism and provides a valuable dataset to be compared against new genomes that remain to be sequenced. 
    more » « less