skip to main content


Title: Phylogenomic inference of the higher classification of velvet ants (Hymenoptera: Mutillidae)
Abstract

The family Mutillidae (Hymenoptera) is a species‐rich group of aculeate wasps that occur worldwide. The higher‐level classification of the family has historically been controversial due, in part, to the extreme sexual dimorphism exhibited by these insects and their morphological similarity to other wasp taxa that also have apterous females. Modern hypotheses on the internal higher classification of Mutillidae have been exclusively based on morphology and, further, they include Myrmosinae as a mutillid subfamily. In contrast, several molecular‐based family‐level studies of Aculeata recovered Myrmosinae as a nonmutillid taxon. To test the validity of these morphology‐based classifications and the phylogenetic placement of the controversial taxon Myrmosinae, a phylogenomic study of Mutillidae was conducted using ultraconserved elements (UCEs). All currently recognized subfamilies and tribes of Mutillidae were represented in this study using 140 ingroup taxa. The maximum likelihood criterion (ML) and the maximum parsimony criterion (MP) were used to infer the phylogenetic relationships within the family and related taxa using an aligned data set of 238,764 characters; the topologies of these respective analyses were largely congruent. The modern higher classification of Mutillidae, based on morphology, is largely congruent with the phylogenomic results of this study at the subfamily level, whereas the tribal classification is poorly supported. The subfamily Myrmosinae was recovered as sister to Sapygidae in the ML analysis and sister to Sapygidae + Pompilidae in the MP analysis; it is consequently raised to the family level, Myrmosidae,stat.nov.The two constituent tribes of Myrmosidae are raised to the subfamily level, Kudakrumiinae,stat.nov., and Myrmosinae,stat.nov.All four recognized tribes of Mutillinae were found to be non‐monophyletic; three additional mutilline clades were recovered in addition to Ctenotillini, Mutillini, Smicromyrmini, and Trogaspidiini sensu stricto. Three new tribes are erected for members of these clades: Pristomutillini Waldren,trib.nov., Psammothermini Waldren,trib.nov., and Zeugomutillini Waldren,trib.nov.All three recognized tribes of Sphaeropthalminae were found to be non‐monophyletic; six additional sphaeropthalmine clades were recovered in addition to Dasymutillini, Pseudomethocini, and Sphaeropthalmini sensu stricto. The subtribe Ephutina of Mutillinae: Mutillini was found to be polyphyletic, with theEphutagenus‐group recovered within Sphaeropthalminae and theOdontomutillagenus‐group recovered as sister to Myrmillinae + Mutillinae. Consequently, the subtribe Ephutina is transferred from Mutillinae: Mutillini and is raised to a tribe within Sphaeropthalminae, Ephutini,stat.nov.Further, the taxon Odontomutillinae,stat.nov., is raised from a synonym of Ephutina to the subfamily level. The sphaeropthalmine tribe Pseudomethocini was found to be polyphyletic, with the subtribe Euspinoliina recovered as a separate clade in Sphaeropthalminae; consequently, Euspinoliina is raised to a tribe, Euspinoliini,stat.nov., in Sphaeropthalminae. The dasylabrine tribe Apteromutillini was recovered within Dasylabrini and is proposed as a new synonym of Dasylabrinae. Finally, dating analyses were conducted to infer the ages of the Pompiloidea families (Mutillidae, Myrmosidae, Pompilidae, and Sapygidae) and the ages of the Mutillidae subfamilies and tribes.

 
more » « less
Award ID(s):
2127744 2127745
NSF-PAR ID:
10420646
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Systematic Entomology
Volume:
48
Issue:
3
ISSN:
0307-6970
Page Range / eLocation ID:
p. 463-487
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Evolutionary and ecological hypotheses of the freshwater mussel subfamily Ambleminae are intensely geographically biased—a consequence of the complete exclusion of Mesoamerican taxa in phylogenetic reconstructions of the clade. We set out to integrate a portion of the Mesoamerican freshwater mussel assemblage into existing hypotheses of amblemine classification and evolution by generating a molecular phylogeny that includes four previously unsampled Mesoamerican genera and nine species endemic to that region. Given the traditionally hypothesized affinity to Nearctic mussels and the understanding that classification should reflect common ancestry, we predicted that (a) Mesoamerican genera would be recovered as members of the recognized tribes of the Ambleminae, and (b) genera would be supported as monophyletic. The mutilocus phylogeny (COI + 28S + 16S) reported herein does not fully support either of those hypotheses. NeitherCyrtonaiasnorPsorulawere supported as monophyletic and we predict several other Mesoamerica genera are also non‐monophyletic. The reconstructed phylogeny recovered four independent lineages of Mesoamerican freshwater mussels and these clades are distributed across the phylogeny of the Ambleminae, including the tribe Quadrulini (Megalonaias), Lampsilini (two lineages:Cyrtonaias explicata/Sphenonaias microdon, andPachynaias), and a previously unrecognized, exclusively Mesoamerican and Rio Grande clade consisting of the generaPsoronaias,PsorulaandPopenaias. The latter clade possesses several morphological characteristics that distinguish it from its sister taxon, tribe Lampsilini, and we recognize this newly identified Mesoamerican clade as a fifth tribe of the Ambleminae attributable to the Popenaiadini Heard & Guckert, 1970. This revised classification more completely recognizes the suprageneric diversity of the Ambleminae.

     
    more » « less
  2. Abstract

    Higher-level classifications often must account for monotypic taxa representing depauperate evolutionary lineages and lacking synapomorphies of their better-known, well-defined sister clades. In a ranked (Linnean) or unranked (phylogenetic) classification system, discovering such a depauperate taxon does not necessarily invalidate the rank classification of sister clades. Named higher taxa must be monophyletic to be phylogenetically valid. Ranked taxa above the species level should also maximize information content, diagnosability, and utility (e.g., in biodiversity conservation). In spider classification, families are the highest rank that is systematically catalogued, and incertae sedis is not allowed. Consequently, it is important that family-level taxa be well defined and informative. We revisit the classification problem of Orbipurae, an unranked suprafamilial clade containing the spider families Nephilidae, Phonognathidae, and Araneidae sensu stricto. We argue that, to maximize diagnosability, information content, conservation utility, and practical taxonomic considerations, this “splitting” scheme is superior to its recently proposed alternative, which lumps these families together as Araneidae sensu lato. We propose to redefine Araneidae and recognize a monogeneric spider family, Paraplectanoididae fam. nov. to accommodate the depauperate lineage Paraplectanoides. We present new subgenomic data to stabilize Orbipurae topology which also supports our proposed family-level classification. Our example from spiders demonstrates why classifications must be able to accommodate depauperate evolutionary lineages, for example, Paraplectanoides. Finally, although clade age should not be a criterion to determine rank, other things being equal, comparable ages of similarly ranked taxa do benefit comparative biology. [Classification, family rank, phylogenomics, systematics, monophyly, spider phylogeny.]

     
    more » « less
  3. Portunoidea is a diverse lineage of ecologically and economically important marine crabs comprising 8 families and 14 subfamilies. Closely related portunid subfamilies Caphyrinae and Thalamitinae constitute some of this group’s greatest morphological and taxonomic diversity, and are the only known lineages to include symbiotic taxa. Emergence of symbiosis in decapods remains poorly studied and portunoid crabs provide an interesting, but often overlooked example. Yet the paucity of molecular phylogenetic data available for Portunoidea makes it challenging to investigate the evolution and systematics of the group. Phylogenetic analyses, though limited, suggest that many putative portunoid taxa are para- or polyphyletic. Here I augment existing molecular data—significantly increasing taxon sampling of Caphyrinae, Thalamitinae, and several disparate portunoid lineages—to investigate the phylogenetic origin of symbiosis within Portunoidea and reevaluate higher- and lower-level portunoid classifications. Phylogenetic analyses were carried out on sequences of H3, 28S rRNA, 16S rRNA, and CO1 for up to 168 portunoid taxa; this included, for the first time, molecular data from the genera Atoportunus , Brusinia , Caphyra , Coelocarcinus , Gonioinfradens , Raymanninus , and Thalamonyx . Results support the placement of all symbiotic taxa ( Caphyra , Lissocarcinus , and two Thalamita ) in a single clade derived within the thalamitine genus Thalamita . Caphyrina Paulson, 1875, nom. trans. is recognized here as a subtribe within the subfamily Thalamitinae. Results also support the following taxonomic actions: Cronius is reclassified as a thalamitine genus; Thalamonyx is reestablished as a valid genus; Goniosupradens is raised to the generic rank; and three new genera ( Zygita gen. nov., Thranita gen. nov., and Trierarchus gen. nov.) are described to accommodate some Thalamita s.l. taxa rendered paraphyletic by Caphyrina. A new diagnosis of Thalamitinae is provided. Results also support a more conservative classification of Portunoidea comprising three instead of eight extant families: Geryonidae (Geryonidae + Ovalipidae; new diagnosis provided), Carcinidae (Carcinidae + Pirimelidae + Polybiidae + Thiidae + Coelocarcinus ; new diagnosis provided) and Portunidae. Finally, 16s rRNA data suggests family Brusiniidae might not be a portunoid lineage. 
    more » « less
  4. Abstract

    The first large‐scale, total‐evidence phylogeny of the owlflies (Neuroptera, Ascalaphidae) is presented. A combined morphological and molecular dataset was analysed under several analytical regimes for 76 exemplars of Myrmeleontiformia (Psychopsidae, Nymphidae, Nemopteridae, Myrmeleontidae, Ascalaphidae), including 57 of Ascalaphidae. At the subordinal level, the families were recovered in all analyses in the form Psychopsidae + (Nymphidae + (Nemopteridae + (Myrmeleontidae + Ascalaphidae). In the DNA‐only maximum‐likelihood analysis, Ascalaphidae were recovered as paraphyletic with respect to the Myrmeleontidae and the tribe Ululodini. In both the parsimony and Bayesian total‐evidence analyses, however, the latter with strong support, traditional Ascalaphidae were recovered as monophyletic, and in the latter, Stilbopteryginae were placed as the immediate sister group. The long‐standing subfamilies Haplogleniinae and Ascalaphinae were not recovered as monophyletic in any analysis, nor were several of the included tribes of non‐ululodine Ascalaphinae. The Ululodini were monophyletic and well supported in all analyses, as were the New World Haplogleniinae and, separately, the African/Malagasy Haplogleniinae. The remaining Ascalaphidae, collectively, were also consistently cohesive, but included a genus that until now has been placed in the Haplogleniinae,Protidricerus.Protidriceruswas discovered to express a well‐developed pleurostoma, a feature previously only encountered in divided‐eye owlflies. The feature traditionally used to differentiate the Haplogleniinae and Ascalaphinae, the entire or divided eye, can no longer be regarded as a spot‐diagnostic synapomorphy to separate these groups within the family. A new subfamilial classification based on these results is proposed and includes the following five subfamilies: Albardiinae, Ululodinae, Haplogleniinae, Melambrotinae and Ascalaphinae. In addition, the monophyletic containing group (Myrmeleontidae + (Palparidae + (Stilbopterygidae + Ascalaphidae))) is elevated to the rank of superfamily, as Myrmeleontoidea, in order to accommodate much‐needed taxonomic and nomenclatural restructuring anticipated to occur within the Ascalaphidae in the future. A list of genera included in each subfamily of Ascalaphidae is provided.

     
    more » « less
  5. Abstract

    We present a time‐calibrated phylogeny of the charismatic green lacewings (Neuroptera: Chrysopidae). Previous phylogenetic studies on the family using DNA sequences have suffered from sparse taxon sampling and/or limited amounts of data. Here we combine all available previously published DNA sequence data and add to it new DNA sequences generated for this study. We analysed these data in a supermatrix using Bayesian and maximum likelihood methods and provide a phylogenetic hypothesis for the family that recovers strong support for the monophyly of all subfamilies and resolves relationships among a large proportion of chrysopine genera. Chrysopinae tribes Leucochrysini and Belonopterygini were recovered as monophyletic sister clades, while the species‐rich tribe Chrysopini was rendered paraphyletic by Ankylopterygini. Relationships among the subfamilies were resolved, although with relatively low statistical support, and the topology varied based on the method of analysis. Greatest support was found for Apochrysinae as sister to Nothochrysinae and Chrysopinae, which is in contrast to traditional concepts that place Nothochrysinae as sister to the rest of the family. Divergence estimates suggest that the stem groups to the various subfamilies diverged during the Triassic‐Jurassic, and that stem groups of the chrysopine tribes diverged during the Cretaceous.

     
    more » « less