skip to main content


Search for: All records

Award ID contains: 2128589

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary The covariance structure of multivariate functional data can be highly complex, especially if the multivariate dimension is large, making extensions of statistical methods for standard multivariate data to the functional data setting challenging. For example, Gaussian graphical models have recently been extended to the setting of multivariate functional data by applying multivariate methods to the coefficients of truncated basis expansions. However, compared with multivariate data, a key difficulty is that the covariance operator is compact and thus not invertible. This paper addresses the general problem of covariance modelling for multivariate functional data, and functional Gaussian graphical models in particular. As a first step, a new notion of separability for the covariance operator of multivariate functional data is proposed, termed partial separability, leading to a novel Karhunen–Loève-type expansion for such data. Next, the partial separability structure is shown to be particularly useful in providing a well-defined functional Gaussian graphical model that can be identified with a sequence of finite-dimensional graphical models, each of identical fixed dimension. This motivates a simple and efficient estimation procedure through application of the joint graphical lasso. Empirical performance of the proposed method for graphical model estimation is assessed through simulation and analysis of functional brain connectivity during a motor task. 
    more » « less
  2. null (Ed.)
    Biosensor data have the potential to improve disease control and detection. However, the analysis of these data under free-living conditions is not feasible with current statistical techniques. To address this challenge, we introduce a new functional representation of biosensor data, termed the glucodensity, together with a data analysis framework based on distances between them. The new data analysis procedure is illustrated through an application in diabetes with continuous-time glucose monitoring (CGM) data. In this domain, we show marked improvement with respect to state-of-the-art analysis methods. In particular, our findings demonstrate that (i) the glucodensity possesses an extraordinary clinical sensitivity to capture the typical biomarkers used in the standard clinical practice in diabetes; (ii) previous biomarkers cannot accurately predict glucodensity, so that the latter is a richer source of information and; (iii) the glucodensity is a natural generalization of the time in range metric, this being the gold standard in the handling of CGM data. Furthermore, the new method overcomes many of the drawbacks of time in range metrics and provides more in-depth insight into assessing glucose metabolism. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)